Decomposition Methods for Large-Scale Semidefinite Programs with Chordal Aggregate Sparsity and Partial Orthogonality

Many semidefinite programs (SDPs) arising in practical applications have useful structural properties that can be exploited at the algorithmic level. In this chapter, we review two decomposition frameworks for large-scale SDPs characterized by either chordal aggregate sparsity or partial orthogonality. Chordal aggregate sparsity allows one to decompose the positive semidefinite matrix variable in the SDP, while partial orthogonality enables the decomposition of the affine constraints. The decomposition frameworks are particularly suitable for the application of first-order algorithms. We describe how the decomposition strategies enable one to speed up the iterations of a first-order algorithm, based on the alternating direction method of multipliers, for the solution of the homogeneous self-dual embedding of a primal-dual pair of SDPs. Precisely, we give an overview of two structure-exploiting algorithms for semidefinite programming, which have been implemented in the open-source MATLAB solver CDCS. Numerical experiments on a range of large-scale SDPs demonstrate that the decomposition methods described in this chapter promise significant computational gains.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Amir Ali Ahmadi,et al.  DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization , 2017, SIAM J. Appl. Algebra Geom..

[3]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[4]  Etienne de Klerk,et al.  Exploiting special structure in semidefinite programming: A survey of theory and applications , 2010, Eur. J. Oper. Res..

[5]  Stephen P. Boyd,et al.  Line search for averaged operator iteration , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[6]  Javad Lavaei,et al.  ADMM for sparse semidefinite programming with applications to optimal power flow problem , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[7]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[8]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[9]  A. Papachristodoulou,et al.  Polynomial sum of squares in fluid dynamics: a review with a look ahead , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Yang Zheng,et al.  Chordal decomposition in operator-splitting methods for sparse semidefinite programs , 2017, Mathematical Programming.

[11]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[12]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[13]  Yang Zheng,et al.  Exploiting Sparsity in the Coefficient Matching Conditions in Sum-of-Squares Programming Using ADMM , 2017, IEEE Control Systems Letters.

[14]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[15]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[16]  Joachim Dahl,et al.  Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones , 2010, Math. Program. Comput..

[17]  Panagiotis Patrinos,et al.  SuperMann: A Superlinearly Convergent Algorithm for Finding Fixed Points of Nonexpansive Operators , 2016, IEEE Transactions on Automatic Control.

[18]  Jonathan E. Spingarn,et al.  Applications of the method of partial inverses to convex programming: Decomposition , 1985, Math. Program..

[19]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[20]  Masakazu Kojima,et al.  Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion , 2011, Math. Program..

[21]  Richard Y. Zhang,et al.  Conic Optimization Theory: Convexification Techniques and Numerical Algorithms , 2018, 2018 Annual American Control Conference (ACC).

[22]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[23]  Yang Zheng,et al.  Fast ADMM for homogeneous self-dual embedding of sparse SDPs , 2016, 1611.01828.

[24]  Samuel Burer,et al.  Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices , 2003, SIAM J. Optim..

[25]  Yang Zheng,et al.  Fast ADMM for semidefinite programs with chordal sparsity , 2016, 2017 American Control Conference (ACC).

[26]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[27]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[28]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[29]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[30]  Yoshio Okamoto,et al.  B-453 User's Manual for SparseCoLO: Conversion Methods for SPARSE COnic-form Linear Optimization Problems , 2009 .

[31]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[32]  L. Rodman,et al.  Positive semidefinite matrices with a given sparsity pattern , 1988 .

[33]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[34]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[35]  Pablo A. Parrilo,et al.  SOSTOOLS Version 3.00 Sum of Squares Optimization Toolbox for MATLAB , 2013, ArXiv.

[36]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[37]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[38]  Yang Zheng,et al.  Fast ADMM for Sum-of-Squares Programs Using Partial Orthogonality , 2017, IEEE Transactions on Automatic Control.

[39]  Heinz H. Bauschke,et al.  Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .

[40]  G Fantuzzi,et al.  Optimal bounds with semidefinite programming: An application to stress-driven shear flows. , 2016, Physical review. E.

[41]  Stephen P. Boyd,et al.  Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding , 2013, Journal of Optimization Theory and Applications.

[42]  A. Papachristodoulou,et al.  A tutorial on sum of squares techniques for systems analysis , 2005, Proceedings of the 2005, American Control Conference, 2005..

[43]  Brian Borchers,et al.  A library of semidefinite programming test problems , 1999 .

[44]  Zhang Liu,et al.  Interior-point methods for large-scale cone programming , 2011 .

[45]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[46]  Yifan Sun,et al.  Decomposition in Conic Optimization with Partially Separable Structure , 2013, SIAM J. Optim..

[47]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[48]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .