A survey of maneuvering target tracking-part VIa: density-based exact nonlinear filtering

This paper is Part VIa of a comprehensive survey of maneuvering target tracking without addressing the so-called measurement-origin uncertainty. It covers theoretical results of density-based exact nonlinear filtering for handling the uncertainties induced by potential target maneuvers as well as nonlinearities in the dynamical systems commonly encountered in target tracking. An emphasis is given to the results of significance for practical considerations, especially those of good potential for tracking applications.

[1]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[2]  G. C. Schmidt Designing nonlinear filters based on Daum's theory , 1993 .

[3]  X. Rong Li,et al.  A Survey of Maneuvering Target Tracking—Part IV: Decision-Based Methods , 2002 .

[4]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[5]  Jamie S. Evans,et al.  Optimal filtering of doubly stochastic auto-regressive processes , 1999, Autom..

[6]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[7]  P. Glynn Optimization of stochastic systems via simulation , 1989, WSC '89.

[8]  P. Vidoni Exponential family state space models based on a conjugate latent process , 1999 .

[9]  Stephen J. Maybank Finite-dimensional filters , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Robert J. Elliott,et al.  New finite-dimensional filters and smoothers for noisily observed Markov chains , 1993, IEEE Trans. Inf. Theory.

[11]  L. Brown,et al.  SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT RANDOM VARIABLES ' BY , 2008 .

[12]  Robert J. Elliott,et al.  A finite-dimensional filter for hybrid observations , 1998, IEEE Trans. Autom. Control..

[13]  R. Bucy Nonlinear filtering theory , 1965 .

[14]  Boris Rozovskii,et al.  Optimal nonlinear filtering for track-before-detect in IR image sequences , 1999, Optics & Photonics.

[15]  Stanton Musick,et al.  Comparison of Particle Method and Finite Difference Nonlinear Filters for Low SNR Target Tracking , 2001 .

[16]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[17]  Marco Ferrante,et al.  Finite dimensional filters for nonlinear stochastic difference equations with multiplicative noises , 1998 .

[18]  S. Marcus,et al.  Nonexistence of finite dimensional filters for conditional statistics of the cubic sensor problem , 1983 .

[19]  X. Rong Li,et al.  A survey of maneuvering target tracking-part VIb: approximate nonlinear density filtering in mixed time , 2010, Defense + Commercial Sensing.

[20]  Stephen S.-T. Yau,et al.  New direct method for Kalman-Bucy filtering system with arbitrary initial condition , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[22]  Marco Ferrante,et al.  A Gaussian-generalized inverse Gaussian finite-dimensional filter , 1999 .

[23]  A. Shiryaev Addendum: On Stochastic Equations in the Theory of Conditional Markov Processes , 1967 .

[24]  G.-G. Hu Finite-dimensional filters with nonlinear drift. , 1997 .

[25]  H. Kushner On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory , 1964 .

[26]  Frederick E. Daum New Nonlinear Filters and Exact Solutions of the Fokker-Planck Equation , 1986, 1986 American Control Conference.

[27]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .

[28]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[29]  B. Rozovskii,et al.  Nonlinear Filtering Revisited: A Spectral Approach , 1997 .

[30]  R. L. Stratonovich CONDITIONAL MARKOV PROCESSES , 1960 .

[31]  A. Makowski Filtering formulae for partially observed linear systems with non-gaussian initial conditions , 1986 .

[32]  Jamie S. Evans,et al.  Finite-Dimensional Filters for Passive Tracking of Markov Jump Linear Systems , 1998, Autom..

[33]  Fabio Spizzichino,et al.  Sufficient conditions for finite dimensionality of filters in discrete time: a Laplace transform-based approach , 2001 .

[34]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[35]  R. Elliott,et al.  Exact finite-dimensional filters for doubly stochastic auto-regressive processes , 1997, IEEE Trans. Autom. Control..

[36]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[37]  Robert J. Elliott,et al.  New explicit filters and smoothers for diffusions with nonlinear drift and measurements , 1998 .

[38]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[39]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[40]  Sawitzki GÜnther,et al.  Finite dimensional filter systems in discrete time , 1981 .

[41]  Wen-Lin Chiou,et al.  Finite-Dimensional Filters with Nonlinear Drift II: Brockett's Problem on Classification of Finite-Dimensional Estimation Algebras , 1994 .

[42]  E. Paldi,et al.  Exact nonlinear filtering via Gauss transform eigenfunctions , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[43]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[44]  A. Farina,et al.  A comparative study of the Benes filtering problem , 2002, Signal Process..

[45]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[46]  Torbjörn Wigren,et al.  Optimal recursive state estimation with quantized measurements , 2000, IEEE Trans. Autom. Control..

[47]  Jifeng Ru,et al.  Detection of Target Maneuver Onset , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[48]  Michael A. Kouritzin,et al.  On exact filters for continuous signals with discrete observations , 1998, IEEE Trans. Autom. Control..

[49]  Amir Dembo,et al.  Exact filters for the estimation of the number of transitions of finite-state continuous-time Markov processes , 1988, IEEE Trans. Inf. Theory.

[50]  Robert J. Elliott,et al.  Finite-dimensional models for hidden Markov chains , 1995, Advances in Applied Probability.

[51]  Robert J. Elliott,et al.  Exact hybrid filters in discrete time , 1996, IEEE Trans. Autom. Control..

[52]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .

[53]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[54]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[55]  Torbjörn Wigren,et al.  Nonlinear techniques for Mode C climb/descent rate estimation in ATC systems , 2001, IEEE Trans. Control. Syst. Technol..

[56]  V. Benes,et al.  Estimation and control for linear, partially observable systems with non-gaussian initial distribution☆☆☆ , 1983 .

[57]  Stephen S.-T. Yau,et al.  New direct method for Yau filtering system with arbitrary initial conditions , 1996, Proceedings of 35th IEEE Conference on Decision and Control.