A kinetic model for epidemic spread

We present a Boltzmann equation for mixtures of three species of particles reducing to the Kermack-McKendrick (SIR) equations for the time-evolution of the density of infected agents in an isolated population. The kinetic model is potentially more detailed and might provide information on space mixing of the agents.

[1]  M. K. Mak,et al.  Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates , 2014, Appl. Math. Comput..

[2]  Johan Bové,et al.  Why outbreaks like coronavirus spread exponentially, and how to “flatten the curve” - Washington Post , 2020 .

[3]  H. P. Hudson,et al.  An application of the theory of probabilities to the study of a priori pathometry.—Part I , 1917 .

[4]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[5]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[6]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[7]  H. Byrne,et al.  Mathematical Biology , 2002 .

[8]  Carl A. B. Pearson,et al.  The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study , 2020, The Lancet Public Health.

[9]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[10]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[11]  W. Wagner,et al.  Convergence of particle schemes for the Boltzmann equation , 1994 .

[12]  M. Pulvirenti,et al.  On the validity of the Boltzmann equation for short range potentials , 2013, 1301.2514.

[13]  Isabelle Gallagher,et al.  From Newton to Boltzmann: Hard Spheres and Short-range Potentials , 2012, 1208.5753.

[14]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[15]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[16]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[17]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[18]  R. Illner,et al.  Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum: Erratum and improved result , 1989 .

[19]  On the cardinality of collisional clusters for hard spheres at low density , 2020, 2005.09962.

[20]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[21]  Jing Zhao,et al.  Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia , 2020, The New England journal of medicine.

[22]  M. Pulvirenti,et al.  The Boltzmann–Grad limit of a hard sphere system: analysis of the correlation error , 2014, 1405.4676.

[23]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[24]  M. Kac Foundations of Kinetic Theory , 1956 .

[25]  Ryan Denlinger The Propagation of Chaos for a Rarefied Gas of Hard Spheres in the Whole Space , 2016, 1605.00589.

[26]  A Brief Introduction to the Scaling Limits and Effective Equations in Kinetic Theory , 2020, 2005.10679.

[27]  O. Lanford Time evolution of large classical systems , 1975 .

[28]  Tetsuro Tsuji,et al.  Backward Clusters, Hierarchy and Wild Sums for a Hard Sphere System in a Low-Density Regime , 2014, 1408.6571.

[29]  W. Wagner,et al.  Stochastic Numerics for the Boltzmann Equation , 2005 .

[30]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .