BALLDock/SLICK: A New Method for Protein-Carbohydrate Docking

Protein-ligand docking is an essential technique in computer-aided drug design. While generally available docking programs work well for most drug classes, carbohydrates and carbohydrate-like compounds are often problematic for docking. We present a new docking method specifically designed to handle docking of carbohydrate-like compounds. BALLDock/SLICK combines an evolutionary docking algorithm for flexible ligands and flexible receptor side chains with carbohydrate-specific scoring and energy functions. The scoring function has been designed to identify accurate ligand poses, while the energy function yields accurate estimates of the binding free energies of these poses. On a test set of known protein-sugar complexes we demonstrate the ability of the approach to generate correct poses for almost all of the structures and achieve very low mean errors for the predicted binding free energies.

[1]  Gabriel Cuevas,et al.  Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions. , 2005, Journal of the American Chemical Society.

[2]  Hans-Peter Lenhof,et al.  BALLView: An object-oriented molecular visualization and modeling framework , 2005, J. Comput. Aided Mol. Des..

[3]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[4]  Hans-Peter Lenhof,et al.  BALLView: a tool for research and education in molecular modeling , 2006, Bioinform..

[5]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[6]  Claus-Michael Lehr,et al.  Computational modeling of the sugar-lectin interaction. , 2004, Advanced drug delivery reviews.

[7]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[8]  David J. Diller,et al.  A critical evaluation of several global optimization algorithms for the purpose of molecular docking , 1999, J. Comput. Chem..

[9]  M Rarey,et al.  Detailed analysis of scoring functions for virtual screening. , 2001, Journal of medicinal chemistry.

[10]  Charles L. Brooks,et al.  Assessing search strategies for flexible docking , 1998, J. Comput. Chem..

[11]  Jonathan W. Essex,et al.  FDS: Flexible ligand and receptor docking with a continuum solvent model and soft‐core energy function , 2003, J. Comput. Chem..

[12]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[13]  J M Thornton,et al.  Analysis and prediction of carbohydrate binding sites. , 2000, Protein engineering.

[14]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[15]  R. Woods,et al.  Involvement of water in carbohydrate-protein binding. , 2001, Journal of the American Chemical Society.

[16]  Alexandre M J J Bonvin,et al.  HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets , 2007, Proteins.

[17]  Oliver Kohlbacher,et al.  SLICK — Scoring and Energy Functions for Protein—Carbohydrate Interactions. , 2006 .

[18]  James J. Kuffner,et al.  Effective sampling and distance metrics for 3D rigid body path planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  D. Rognan,et al.  Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. , 2000, Journal of medicinal chemistry.

[20]  A. Treasurywala,et al.  A genetic algorithm based method for docking flexible molecules , 1994 .

[21]  Jun Yan,et al.  Mechanism by Which Orally Administered β-1,3-Glucans Enhance the Tumoricidal Activity of Antitumor Monoclonal Antibodies in Murine Tumor Models1 , 2004, The Journal of Immunology.

[22]  Xavier Morelli,et al.  GFscore: A General Nonlinear Consensus Scoring Function for High-Throughput Docking , 2006, J. Chem. Inf. Model..

[23]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[24]  M. Wirth,et al.  Lectin-mediated drug targeting: quantification of binding and internalization of Wheat germ agglutinin and Solanum tuberosum lectin using Caco-2 and HT-29 cells. , 1998, Journal of drug targeting.

[25]  G. Klebe,et al.  Statistical potentials and scoring functions applied to protein-ligand binding. , 2001, Current opinion in structural biology.

[26]  M J Sternberg,et al.  A continuum model for protein-protein interactions: application to the docking problem. , 1995, Journal of molecular biology.

[27]  Yuan-Ping Pang,et al.  Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. , 2000, Journal of medicinal chemistry.

[28]  Andreas Bohne,et al.  W3-SWEET: Carbohydrate Modeling By Internet , 1998 .

[29]  Michael Wirth,et al.  Lectin-Mediated Drug Targeting: Preparation, Binding Characteristics, and Antiproliferative Activity of Wheat Germ Agglutinin Conjugated Doxorubicin on Caco-2 Cells , 1998, Pharmaceutical Research.

[30]  D. Solís,et al.  Hydrogen-bonding pattern of methyl beta-lactoside binding to the Ricinus communis lectins. , 1993, European journal of biochemistry.

[31]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[32]  René Thomsen,et al.  MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.

[33]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[34]  A. Bondi van der Waals Volumes and Radii , 1964 .

[35]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[36]  A. N. Jain,et al.  Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. , 1996, Chemistry & biology.

[37]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[38]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[39]  Ruben Abagyan,et al.  Comparative study of several algorithms for flexible ligand docking , 2003, J. Comput. Aided Mol. Des..

[40]  B. Hirst,et al.  Lectin-mediated mucosal delivery of drugs and microparticles. , 2000, Advanced drug delivery reviews.

[41]  Renxiao Wang,et al.  Comparative evaluation of 11 scoring functions for molecular docking. , 2003, Journal of medicinal chemistry.

[42]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[43]  Andreas von Bubnoff Sugar coating improves anticancer treatment , 2005 .

[44]  Hans-Peter Lenhof,et al.  BALL-rapid software prototyping in computational molecular biology , 2000, Bioinform..

[45]  D. E. Clark,et al.  Flexible docking using tabu search and an empirical estimate of binding affinity , 1998, Proteins.

[46]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[47]  Charles L. Brooks,et al.  Assessing energy functions for flexible docking , 1998 .

[48]  M. Karplus,et al.  Docking by Monte Carlo minimization with a solvation correction: Application to an FKBP—substrate complex , 1997 .

[49]  Peter H. Seeberger,et al.  Total Synthesis of Antigen Bacillus anthracis Tetrasaccharide — Creation of an Anthrax Vaccine Candidate. , 2006 .

[50]  Natasja Brooijmans,et al.  Molecular recognition and docking algorithms. , 2003, Annual review of biophysics and biomolecular structure.

[51]  Alexandre M J J Bonvin,et al.  Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. , 2007, Glycobiology.

[52]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[53]  Didier Rognan,et al.  ConsDock: A new program for the consensus analysis of protein–ligand interactions , 2002, Proteins.

[54]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[55]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[56]  Peter J. Reilly,et al.  Specific empirical free energy function for automated docking of carbohydrates to proteins , 2003, J. Comput. Chem..

[57]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[58]  Ingo Muegge,et al.  Evaluation of docking/scoring approaches: A comparative study based on MMP3 inhibitors , 2000, J. Comput. Aided Mol. Des..

[59]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[60]  Shaomeng Wang,et al.  MCDOCK: A Monte Carlo simulation approach to the molecular docking problem , 1999, J. Comput. Aided Mol. Des..

[61]  Brian K. Shoichet,et al.  Molecular docking using shape descriptors , 1992 .