Novel Lignin-Modified Forward Osmosis Membranes: Waste Materials for Wastewater Treatment

[1]  Jiding Li,et al.  Green lignin‐based polyester nanofiltration membranes with ethanol and chlorine resistance , 2021, Journal of Applied Polymer Science.

[2]  M. Elimelech,et al.  Selective membranes in water and wastewater treatment: Role of advanced materials , 2021, Materials Today.

[3]  Chunhua Zhang,et al.  Wood–inspired preparation of ligninsulfonate/trimesoylchloride nanofilm with a highly negatively charged surface for removing anionic dyes , 2021 .

[4]  M. Elimelech,et al.  Environmental Applications of Engineered Materials with Nanoconfinement , 2021 .

[5]  M. Sadrzadeh,et al.  Nanodiamond-Enabled Thin-Film Nanocomposite Polyamide Membranes for High-Temperature Water Treatment. , 2020, ACS applied materials & interfaces.

[6]  M. Sadrzadeh,et al.  Development of antifouling membranes using agro-industrial waste lignin for the treatment of Canada's oil sands produced water , 2020 .

[7]  M. Sadrzadeh,et al.  Industrial waste lignin as an antifouling coating for the treatment of oily wastewater: Creating wealth from waste , 2020 .

[8]  Qun Wang,et al.  Towards enhanced antifouling and flux performances of thin-film composite forward osmosis membrane via constructing a sandwich-like carbon nanotubes-coated support , 2020 .

[9]  M. Sadrzadeh,et al.  Thermally stable thin film composite polymeric membranes for water treatment: A review , 2020 .

[10]  M. Sadrzadeh,et al.  Fabrication of Highly Permeable and Thermally-Stable Reverse Osmosis Thin Film Composite Polyamide Membranes. , 2019, ACS applied materials & interfaces.

[11]  D. Bhattacharyya,et al.  Composite Membranes Derived from Cellulose and Lignin Sulfonate for Selective Separations and Antifouling Aspects , 2019, Nanomaterials.

[12]  Yuqing Zhang,et al.  Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling , 2019, Journal of Membrane Science.

[13]  Jung-Hyun Lee,et al.  High performance polyacrylonitrile-supported forward osmosis membranes prepared via aromatic solvent-based interfacial polymerization , 2019, Separation and Purification Technology.

[14]  M. Sadrzadeh,et al.  Treatment of oil sands produced water using combined electrocoagulation and chemical coagulation techniques. , 2018, The Science of the total environment.

[15]  P. Fatehi,et al.  Synthesis and characterization of lignin–poly(acrylamide)–poly(2‐methacryloyloxyethyl) trimethyl ammonium chloride copolymer , 2018 .

[16]  Wei Li,et al.  Polyarylester nanofiltration membrane prepared from monomers of vanillic alcohol and trimesoyl chloride , 2018 .

[17]  Jung-Hyun Lee,et al.  Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators , 2017 .

[18]  J. McCutcheon,et al.  Novel Commercial Aquaporin Flat-sheet Membrane for Forward Osmosis , 2017 .

[19]  Ya-ping Wu,et al.  Depositing lignin on membrane surfaces for simultaneously upgraded reverse osmosis performances: An upscalable route , 2017 .

[20]  T. Thundat,et al.  Synthesis of thin film composite polyamide membranes: Effect of monohydric and polyhydric alcohol additives in aqueous solution , 2017 .

[21]  T. Thundat,et al.  Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water , 2016 .

[22]  S. Bhattacharjee,et al.  Treatment of an in situ oil sands produced water by polymeric membranes , 2016 .

[23]  Xian Jun Loh,et al.  Towards lignin-based functional materials in a sustainable world , 2016 .

[24]  T. Thundat,et al.  A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes , 2016, Scientific Reports.

[25]  J. Labidi,et al.  Physicochemical properties of PLA lignin blends , 2014 .

[26]  J. McCutcheon,et al.  A new commercial thin film composite membrane for forward osmosis , 2014 .

[27]  Menachem Elimelech,et al.  In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance. , 2013, Environmental science & technology.

[28]  Menachem Elimelech,et al.  A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes , 2013 .

[29]  Tom Depuydt,et al.  Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. , 2013, Chemical Society reviews.

[30]  T. Jesionowski,et al.  Physicochemical and electrokinetic properties of silica/lignin biocomposites. , 2013, Carbohydrate polymers.

[31]  Andrea Achilli,et al.  Standard methodology for evaluating membrane performance in osmotically driven membrane processes , 2013 .

[32]  Menachem Elimelech,et al.  Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. , 2012, Environmental science & technology.

[33]  D. Rodrigue,et al.  Mechanical and rheological behavior of highly filled polystyrene with lignin , 2012 .

[34]  Kai Yu Wang,et al.  Developing thin‐film‐composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization , 2012 .

[35]  A. Celzard,et al.  Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification , 2011 .

[36]  Ngai Yin Yip,et al.  Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. , 2011, Environmental science & technology.

[37]  The-Vinh Nguyen,et al.  Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. , 2010, Environmental science & technology.

[38]  A. Rodrigues,et al.  An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin , 2009 .

[39]  Tzahi Y Cath,et al.  Solute coupled diffusion in osmotically driven membrane processes. , 2009, Environmental science & technology.

[40]  Menachem Elimelech,et al.  Chemical and physical aspects of organic fouling of forward osmosis membranes , 2008 .

[41]  J. McCutcheon,et al.  Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis , 2006 .

[42]  Robert L McGinnis,et al.  Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance , 2006 .

[43]  S. H. Kim,et al.  Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. , 2005, Environmental science & technology.

[44]  V. Lobo,et al.  Mutual diffusion coefficients in aqueous electrolyte solutions (Technical Report) , 1993 .

[45]  Robert N. Wenzel,et al.  Surface Roughness and Contact Angle. , 1949 .

[46]  M. Sadrzadeh,et al.  Prediction of surface charge properties on the basis of contact angle titration models , 2021 .

[47]  Yi-Ming Sun,et al.  Employing lignin in the formation of the selective layer of thin-film composite membranes for pervaporation desalination , 2021, Materials Advances.