Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy

We present new radial velocity results for 176 stars in the Fornax dwarf spheroidal galaxy, of which at least 156 are probable Fornax members. We combine with previously published data to obtain a radial velocity sample with 206 stars, of which at least 176 are probable Fornax members. We detect the hint of rotation about an axis near Fornax's morphological minor axis, although the significance of the rotation signal in the galactic rest frame is sensitive to the adopted value of Fornax's proper motion. Regardless, the observed stellar kinematics is dominated by random motions, and we do not find kinematic evidence of tidal disruption. The projected velocity dispersion profile of the binned data set remains flat over the sampled region, which reaches a maximum angular radius of 65'. Single-component King models in which mass follows light fail to reproduce the observed flatness of the velocity dispersion profile. Two-component (luminous plus dark matter) models can reproduce the data, provided that the dark component extends sufficiently beyond the luminous component and the central dark matter density is of the same order as the central luminous density. These requirements suggest a more massive, darker Fornax than standard core-fitting analyses have previously concluded, with M/LV over the sampled region reaching 10-40 times the M/LV of the luminous component. We also apply a nonparametric mass estimation technique, introduced in a companion paper. Although it is designed to operate on data sets containing velocities for >1000 stars, the estimation yields preliminary results suggesting M/LV ~ 15 inside r < 1.5 kpc.

[1]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[2]  D. Evans The Revision of the General Catalogue of Radial Velocities , 1967 .

[3]  Walter Dehnen,et al.  Local stellar kinematics from Hipparcos data , 1997 .

[4]  Heidelberg,et al.  Draco: A Failure of the Tidal Model , 2003, astro-ph/0302287.

[5]  R. Ibata,et al.  Galactic Halo Substructure in the Sloan Digital Sky Survey: The Ancient Tidal Stream from the Sagittarius Dwarf Galaxy , 2000, astro-ph/0004255.

[6]  David W. Latham,et al.  A Search for Spectroscopic Binaries in the Globular Cluster M3 , 1988 .

[7]  M. Mateo,et al.  A kinematic study of the Fornax dwarf spheroidal galaxy , 1991 .

[8]  K. Freeman,et al.  A Wide-Field Survey of the Fornax Dwarf Spheroidal Galaxy , 2004, astro-ph/0412196.

[9]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[10]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[11]  A tidal extension in the ursa minor dwarf spheroidal galaxy , 2001, astro-ph/0101456.

[12]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. IV. The Extended Structure of the Ursa Minor Dwarf Spheroidal Galaxy , 2002, astro-ph/0205194.

[13]  J. Kuhn Unbound dwarf spheroidal galaxies and the mass of the Milky Way , 1993 .

[14]  N. W. Evans,et al.  Dark matter in dwarf spheroidals - I. Models , 2002 .

[15]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[16]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[17]  F. Ferraro,et al.  THE DRACO AND URSA MINOR DWARF SPHEROIDALS , 2002 .

[18]  Y. Yoshii,et al.  Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample , 1992, astro-ph/0003103.

[19]  J. D. Annan,et al.  The influence of binary stars on dwarf spheroidal galaxy kinematics , 1995, astro-ph/9510152.

[20]  H. Morrison,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. I. Method and a Preliminary Measurement for Fornax , 2002, astro-ph/0209430.

[21]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[22]  Modeling Star Formation in Dwarf Spheroidal Galaxies: A Case for Extended Dark Matter Halos , 2005, astro-ph/0502126.

[23]  Shell structure in the Fornax dwarf spheroidal galaxy , 2003, astro-ph/0311241.

[24]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[25]  Stephen A. Shectman,et al.  A Two-Dimensional Photon Counter , 1984, Astronomical Telescopes and Instrumentation.

[26]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[27]  N. W. Evans,et al.  A photometrically and kinematically distinct core in the Sextans dwarf spheroidal galaxy , 2004 .

[28]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[29]  E. Olszewski,et al.  The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and its Effects on the Measured Velocity Dispersions of Dwarf Spheroidals , 1996 .

[30]  The Milky Way's satellite population in a lambdaCDM universe , 2002, astro-ph/0203342.

[31]  Ralf Klessen,et al.  Are Dwarf Spheroidal Galaxies Dark Matter Dominated or Remnants of Disrupted Larger Satellite Galaxies? A Possible Test , 2001, astro-ph/0110427.

[32]  Mario Mateo,et al.  Estimating dark matter distributions , 2005 .

[33]  A. Kaufer,et al.  Two distinct ancient components in the Sculptor Dwarf Spheroidal Galaxy: First Results from DART , 2004 .

[34]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[35]  N. W. Evans,et al.  Ursa Major: A Missing Low-Mass CDM Halo? , 2005 .

[36]  D. York,et al.  New Insights on the Draco Dwarf Spheroidal Galaxy from the Sloan Digital Sky Survey: A Larger Radius and No Tidal Tails , 2001, astro-ph/0108100.

[37]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[38]  K. Stanek,et al.  Discovery of a Tidal Extension of the Sagittarius Dwarf Spheroidal Galaxy , 1996 .

[39]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[40]  Rodrigo Ibata,et al.  Sagittarius: the nearest dwarf galaxy , 1995 .

[41]  Mark I. Wilkinson,et al.  First Clear Signature of an Extended Dark Matter Halo in the Draco Dwarf Spheroidal , 2001 .

[42]  M. Bessell,et al.  UBVRI PHOTOMETRY WITH A GA-AS PHOTOMULTIPLIER. , 1976 .

[43]  Vanessa Hill,et al.  Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team , 2004 .

[44]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[45]  S. Tremaine,et al.  Measuring mass-to-light ratios of spherical stellar systems by core fitting. , 1986 .

[46]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[47]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[48]  K. Freeman,et al.  The structure and mass function of the globular cluster M3. , 1976 .

[49]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[50]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[51]  Parametric Dwarf Spheroidal Tidal Interaction , 2003, astro-ph/0302463.

[52]  Mark I. Wilkinson,et al.  A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy , 2003, astro-ph/0304093.

[53]  S. White,et al.  The satellite population of the Milky Way in a ΛCDM universe , 2002 .

[54]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[55]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[56]  Nicholas B. Suntzeff,et al.  Spectroscopy of giants in LMC clusters. I. Velocities, abundances, and the age-metallicity relation , 1991 .

[57]  J. Gunn,et al.  Dynamical studies of globular clusters based on photoelectric radial velocities of individual stars. I. M3. , 1979 .

[58]  Helmut Jerjen,et al.  Near-field Cosmology with Dwarf Elliptical Galaxies , 2005 .

[59]  J. Kormendy,et al.  The dark matter halos of Draco and Ursa Minor , 1990 .

[60]  M. Aaronson,et al.  Accurate radial velocities for carbon stars in Draco and Ursa Minor - The first hint of a dwarf spheroidal mass-to-light ratio , 1983 .

[61]  S. Majewski,et al.  Absolute Proper Motion of the Fornax Dwarf Spheroidal Galaxy from Photographic and Hubble Space Telescope WFPC2 Data , 2000, astro-ph/0405260.

[62]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.