Control of nonlinear distributed parameter processes using symmetry groups and invariance conditions

A control method for nonlinear distributed parameter processes is studied based on the connection between the geometric nature of system of equations and the algebraic group theory. Infinitesimal invariance conditions on systems of equations are used to develop a control equation based on a given control objective. Two examples illustrate the method.

[1]  A. Palazoglu,et al.  Sliding Mode Control of Nonlinear Distributed Parameter Chemical Processes , 1995 .

[2]  Jean Biston,et al.  Modeling of a distributed parameter process with a variable boundary: application to its control , 1994 .

[3]  P. Daoutidis,et al.  Feedback Control of Hyperbolic PDE Systems , 1996 .

[4]  Kam-Chi Li,et al.  Sliding mode control of distributed parameter systems , 1994, Autom..

[5]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[6]  Panagiotis D. Christofides,et al.  Robust Control of Parabolic PDE Systems , 1998 .

[7]  Ömer Morgül,et al.  A dynamic control law for the wave equation , 1994, Autom..

[8]  Ahmet Karakas,et al.  Control of nonlinear distributed parameter systems using generalized invariants , 2000, Autom..

[9]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[10]  Denis Dochain,et al.  Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation , 1992, Autom..

[11]  Ralph K. Cavin,et al.  Distributed parameter system optimum control design via finite element discretization , 1977, Autom..

[12]  P. Olver Applications of lie groups to differential equations , 1986 .

[13]  Manfred Morari,et al.  Control system design for a fixed-bed methanation reactor , 1986 .

[14]  R. Aris First-order partial differential equations , 1987 .

[15]  Ahmet Palazoglu,et al.  Use of symmetry groups in sliding mode control of nonlinear distributed parameter systems , 1996 .

[16]  H. Sira-Ramírez Distributed sliding mode control in systems described by linear and quasilinear partial differential equations , 1989 .

[17]  A. A. Patwardhan,et al.  Nonlinear model-predictive control of distributed-parameter systems , 1992 .

[18]  Nikolaos S. Papageorgiou,et al.  Optimal control and relaxation for a class of nonlinear distributed parameter systems , 1990 .

[19]  Eigenvalue inclusion for model approximations to distributed parameter systems , 1992 .