Scaled subordinators and generalizations of the Indian buffet process
暂无分享,去创建一个
[1] L. L. Cam,et al. An approximation theorem for the Poisson binomial distribution. , 1960 .
[2] J. Kingman,et al. Completely random measures. , 1967 .
[3] J. Kingman. Random Discrete Distributions , 1975 .
[4] T. Ferguson,et al. Bayesian Nonparametric Estimation Based on Censored Data , 1979 .
[5] N. Hjort. Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .
[6] Mihael Perman,et al. Order statistics for jumps of normalised subordinators , 1993 .
[7] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[8] Richard Arratia,et al. On the central role of scale invariant Poisson processes on (0, ∞) , 1997, Microsurveys in Discrete Probability.
[9] Daryl J. Daley,et al. An Introduction to the Theory of Point Processes , 2013 .
[10] Yongdai Kim. NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .
[11] Simon Tavaré,et al. The Poisson–Dirichlet Distribution and the Scale-Invariant Poisson Process , 1999, Combinatorics, Probability and Computing.
[12] Svante Janson,et al. Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.
[13] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[14] J. Pitman. Poisson-Kingman partitions , 2002, math/0210396.
[15] R. Arratia,et al. Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .
[16] Mathew D. Penrose,et al. Random minimal directed spanning trees and Dickman-type distributions , 2004, Advances in Applied Probability.
[17] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[18] Dudley Stark. LOGARITHMIC COMBINATORIAL STRUCTURES: A PROBABILISTIC APPROACH (EMS Monographs in Mathematics) By R ICHARD A RRATIA , A. D. B ARBOUR and S IMON T AVARÉ : 363 pp., €69.00, ISBN 3-03719-000-0 (European Mathematical Society, 2003) , 2005 .
[19] M. Yor,et al. On a particular class of self-decomposable random variables: the durations of Bessel excursions straddling independent exponential times , 2006 .
[20] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[21] B. Schölkopf,et al. Modeling Dyadic Data with Binary Latent Factors , 2007 .
[22] Michalis K. Titsias,et al. The Infinite Gamma-Poisson Feature Model , 2007, NIPS.
[23] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[24] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[25] T. Griffiths,et al. Bayesian nonparametric latent feature models , 2007 .
[26] Thomas L. Griffiths,et al. Latent Features in Similarity Judgments: A Nonparametric Bayesian Approach , 2008, Neural Computation.
[27] Jean-Philippe Vert,et al. Clustered Multi-Task Learning: A Convex Formulation , 2008, NIPS.
[28] David B. Dunson,et al. Multi-Task Learning for Analyzing and Sorting Large Databases of Sequential Data , 2008, IEEE Transactions on Signal Processing.
[29] Antonio Lijoi,et al. Distributional properties of means of random probability measures , 2009 .
[30] Massimiliano Pontil,et al. Taking Advantage of Sparsity in Multi-Task Learning , 2009, COLT.
[31] Y. Teh,et al. Indian Buffet Processes with Power-law Behavior , 2009, NIPS.
[32] Thomas L. Griffiths,et al. Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.
[33] Lawrence Carin,et al. A Stick-Breaking Construction of the Beta Process , 2010, ICML.
[34] Michael I. Jordan,et al. Beta Processes, Stick-Breaking and Power Laws , 2011, 1106.0539.
[35] Michael I. Jordan,et al. Bayesian Nonparametric Latent Feature Models , 2011 .
[36] Michael I. Jordan,et al. Joint Modeling of Multiple Related Time Series via the Beta Process , 2011, 1111.4226.
[37] Thomas L. Griffiths,et al. The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..
[38] François Caron. Bayesian nonparametric models for bipartite graphs , 2012, NIPS.
[39] David B. Dunson,et al. Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.
[40] Michael I. Jordan,et al. Cluster and Feature Modeling from Combinatorial Stochastic Processes , 2012, 1206.5862.
[41] Luc Devroye,et al. On simulation and properties of the stable law , 2014, Stat. Methods Appl..
[42] Patrizia Berti,et al. CENTRAL LIMIT THEOREMS FOR AN INDIAN BUFFET MODEL WITH RANDOM WEIGHTS , 2013, 1304.3626.
[43] Ulrike Goldschmidt,et al. An Introduction To The Theory Of Point Processes , 2016 .
[44] Daniel M. Roy,et al. The combinatorial structure of beta negative binomial processes , 2013, Bernoulli.