A Numerically stable reduced-gradient type algorithm for solving large-scale linearly constrained minimization problems

Abstract In this paper we present a reduced-gradient type algorithm for solving large-scale linearly constrained minimization problems. During each iteration of the algorithm linear systems are solved using a preconditioned conjugate-gradient scheme. The preconditioning scheme uses orthogonal transformations, thus providing numerical stability. The total storage used by the algorithm may be predicted before beginning the calculations. We present some numerical experiments which confirm the reliability of the algorithm.

[1]  Michael A. Saunders,et al.  A FAST, STABLE IMPLEMENTATION OF THE SIMPLEX METHOD USING BARTELS-GOLUB UPDATING , 1976 .

[2]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[3]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[4]  W. E. Gentleman Least Squares Computations by Givens Transformations Without Square Roots , 1973 .

[5]  D. O’Leary A generalized conjugate gradient algorithm for solving a class of quadratic programming problems , 1977 .

[6]  Philip E. Gill,et al.  Practical optimization , 1981 .

[7]  R. Bartels A stabilization of the simplex method , 1971 .

[8]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[9]  K. G. Ramakrishnan,et al.  A numerically stable optimization method based on A homogeneous function , 1976, Math. Program..

[10]  R. Fourer Staircase matrices and systems , 1984 .

[11]  G. Golub,et al.  Numerical techniques in mathematical programming , 1970 .

[12]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[13]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[14]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[15]  Gene H. Golub,et al.  The simplex method of linear programming using LU decomposition , 1969, Commun. ACM.

[16]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[17]  Emilio Spedicato,et al.  Computational experience with conjugate gradient algorithms , 1979 .

[18]  Åke Bjürck METHODS FOR SPARSE LINEAR LEAST SQUARES PROBLEMS , 1976 .

[19]  D. Jacobson,et al.  An algorithm that minimizes homogeneous functions of n variables in n+2 iterations and rapidly minim , 1972 .

[20]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[21]  Ana Friedlander,et al.  Optimization with staircase structure: An application to generation scheduling , 1990, Comput. Oper. Res..

[22]  A. George,et al.  Solution of sparse linear least squares problems using givens rotations , 1980 .

[23]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[24]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[25]  Magnus R. Hestenes,et al.  Conjugate Direction Methods in Optimization , 1980 .