Coherent randomness tests and computing the $K$-trivial sets

We show that a Martin-Lof random set for which the effective version of the Lebesgue density theorem fails computes every K-trivial set. Combined with a recent result by Day and Miller, this gives a positive solution to the ML-covering problem (Question 4.6 in Randomness and computability: Open questions. Bull. Symbolic Logic, 12(3):390–410, 2006). On the other hand, we settle stronger variants of the covering problem in the negative. We show that any witness for the solution of the covering problem, namely an incomplete random set which computes all K-trivial sets, must be very close to being Turing complete. For example, such a random set must be LR-hard. Similarly, not every K-trivial set is computed by the two halves of a random set. The work passes through a notion of randomness which characterises computing K-trivial sets by random sets. This gives a “smart” K-trivial set, all randoms from whom this set is computed have to compute all K-trivial sets.

[1]  Bjørn Kjos-Hanssen,et al.  Lowness notions, measure and domination , 2012, J. Lond. Math. Soc..

[2]  André Nies,et al.  Using random sets as oracles , 2007 .

[3]  André Nies,et al.  Benign cost functions and lowness properties , 2011, The Journal of Symbolic Logic.

[4]  Michael Nedzelsky,et al.  Recursion Theory I , 2008, Arch. Formal Proofs.

[5]  Stephen G. Simpson,et al.  Almost everywhere domination , 2004, Journal of Symbolic Logic.

[6]  Bjorn Kjos-Hanssen,et al.  Low for random reals and positive-measure domination , 2007, 1408.2171.

[7]  André Nies,et al.  DEMUTH’S PATH TO RANDOMNESS , 2014, The Bulletin of Symbolic Logic.

[8]  R. Durrett Probability: Theory and Examples , 1993 .

[9]  Noam Greenberg,et al.  Inherent enumerability of strong jump-traceability , 2011, 1110.1435.

[10]  A. Nies Computability and randomness , 2009 .

[11]  Daniel Turetsky,et al.  A K-trivial set which is not jump traceable at certain orders , 2012, Inf. Process. Lett..

[12]  Stephen G. Simpson,et al.  Mass Problems and Hyperarithmeticity , 2007, J. Math. Log..

[13]  Wolfgang Merkle,et al.  Kolmogorov Complexity and the Recursion Theorem , 2006, STACS.

[14]  André Nies,et al.  Randomness and Computability: Open Questions , 2006, Bulletin of Symbolic Logic.

[15]  Adam R. Day,et al.  Density, forcing, and the covering problem , 2013, 1304.2789.

[16]  André Nies,et al.  Algorithmic Aspects of Lipschitz Functions , 2014, Comput..

[17]  Gregory J. Chaitin Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..

[18]  André Nies Calculus of Cost Functions , 2017, The Incomputable.

[19]  Jing Zhang,et al.  Using Almost-everywhere theorems from Analysis to Study Randomness , 2014, Bull. Symb. Log..

[20]  Noam Greenberg,et al.  COMPUTING K-TRIVIAL SETS BY INCOMPLETE RANDOM SETS , 2013, The Bulletin of Symbolic Logic.

[21]  Johanna N. Y. Franklin,et al.  DIFFERENCE RANDOMNESS , 2022 .

[22]  Stephen G. Simpson,et al.  Mass problems and almost everywhere domination , 2007, Math. Log. Q..

[23]  André Nies,et al.  Denjoy, Demuth and density , 2013, J. Math. Log..

[24]  Antonín Kucera,et al.  An Alternative, Priority-Free, Solution to Post's Problem , 1996, MFCS.

[25]  A. Nies Lowness properties and randomness , 2005 .

[26]  André Nies,et al.  Demuth randomness and computational complexity , 2011, Ann. Pure Appl. Log..

[27]  André Nies,et al.  The Denjoy alternative for computable functions , 2012, STACS.

[28]  André Nies,et al.  Counting the Changes of Random D02 Sets , 2010, CiE.

[29]  Michal Morayne,et al.  Martingale proof of the existence of Lebesgue points , 1989 .

[30]  J. K. Hunter,et al.  Measure Theory , 2007 .

[31]  Liang Yu,et al.  On initial segment complexity and degrees of randomness , 2008 .

[32]  André Nies,et al.  Lowness properties and approximations of the jump , 2008, Ann. Pure Appl. Log..

[33]  André Nies,et al.  Interactions of Computability and Randomness , 2011 .

[34]  Stephen G. Simpson,et al.  Schnorr randomness and the Lebesgue differentiation theorem , 2013 .

[35]  Claus-Peter Schnorr,et al.  The process complexity and effective random tests. , 1972, STOC.

[36]  Noam Greenberg,et al.  Characterizing the strongly jump-traceable sets via randomness , 2011, 1109.6749.

[37]  Stephen G. Simpson,et al.  Almost everywhere domination and superhighness , 2007, Math. Log. Q..

[38]  V. Vovk,et al.  On the Empirical Validity of the Bayesian Method , 1993 .

[39]  André Nies,et al.  Randomness, relativization and Turing degrees , 2005, J. Symb. Log..

[40]  H. Lebesgue Sur l'intégration des fonctions discontinues , 1910 .

[41]  Antonín Kucera,et al.  Low upper bounds of ideals , 2007, The Journal of Symbolic Logic.

[42]  André Nies Studying Randomness Through Computation , 2011 .

[43]  André Nies,et al.  Counting the changes of random Δ20 sets , 2010, J. Log. Comput..

[44]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[45]  Joseph R. Schoenfield Recursion theory , 1993 .

[46]  Péter Gács,et al.  Uniform test of algorithmic randomness over a general space , 2003, Theor. Comput. Sci..

[47]  Sebastiaan Terwijn,et al.  Lowness for The Class of Random Sets , 1999, J. Symb. Log..

[48]  André Nies,et al.  Trivial Reals , 2002, CCA.

[49]  André Nies,et al.  Randomness and Differentiability , 2011, ArXiv.