Computability-theoretic and proof-theoretic aspects of partial and linear orderings

Szpilrajn’s Theorem states that any partial orderP=〈S,<p〉 has a linear extensionP=〈S,<L〉. This is a central result in the theory of partial orderings, allowing one to define, for instance, the dimension of a partial ordering. It is now natural to ask questions like “Does a well-partial ordering always have a well-ordered linear extension?” Variations of Szpilrajn’s Theorem state, for various (but not for all) linear order typesτ, that ifP does not contain a subchain of order typeτ, then we can chooseL so thatL also does not contain a subchain of order typeτ. In particular, a well-partial ordering always has a well-ordered extension.We show that several effective versions of variations of Szpilrajn’s Theorem fail, and use this to narrow down their proof-theoretic strength in the spirit of reverse mathematics.

[1]  M. Rabin Review: A. Frohlich, J. C. Shepherdson, On the Factorisation of Polynomials in a Finite Number of Steps; A. Frohlich, J. C. Shepherdson, Effective Procedures in Field Theory , 1959 .

[2]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[3]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[4]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  R. Downey Chapter 14 Computability theory and linear orderings , 1998 .

[6]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[7]  A. Nerode,et al.  Effective content of field theory , 1979 .

[8]  Theodore A. Slaman,et al.  Extending Partial Orders to Dense Linear Orders , 1998, Ann. Pure Appl. Log..

[9]  Mohsen Harakeh,et al.  Proceedings of a NATO Advanced Study Institute , 1997 .

[10]  Maurice Pouzet,et al.  Linear Extensions of Ordered Sets , 1982 .

[11]  Reed Solomon,et al.  Ordered Groups: A Case Study in Reverse Mathematics , 1999, Bulletin of Symbolic Logic.

[12]  R. Soare Recursively enumerable sets and degrees , 1987 .

[13]  Stephen G. Simpson,et al.  Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..

[14]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[15]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[16]  Carl G. Jockusch,et al.  Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.

[17]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[18]  Paul Seymour,et al.  The metamathematics of the graph minor theorem , 1985 .

[19]  R. Soare,et al.  Π⁰₁ classes and degrees of theories , 1972 .

[20]  B. H. Mayoh Review: M. O. Rabin, Computable Algebraic Systems; Michael O. Rabin, Computable Algebra, General Theory and Theory of Computable Fields , 1967 .

[21]  M. Dehn Über unendliche diskontinuierliche Gruppen , 1911 .