Pattern 1j+10j Avoiding Binary Words

In this paper we study the enumeration and the construction of particular binary words avoiding the pattern 1j+10j. By means of the theory of Riordan arrays, we solve the enumeration problem and we give a particular succession rule, called jumping and marked succession rule, which describes the growth of such words according to their number of ones. Moreover, the problem of associating a word to a path in the generating tree obtained by the succession rule is solved by introducing an algorithm which constructs all binary words and then kills those containing the forbidden pattern.

[1]  Leonidas J. Guibas,et al.  String Overlaps, Pattern Matching, and Nontransitive Games , 1981, J. Comb. Theory A.

[2]  Renzo Sprugnoli,et al.  Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern , 2011, Theor. Comput. Sci..

[3]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[4]  M. Cecilia Verri,et al.  Generating trees and proper Riordan Arrays , 2000, Discret. Math..

[5]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[6]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[7]  Andrew Odlyzko,et al.  Long repetitive patterns in random sequences , 1980 .

[8]  Alberto Del Lungo,et al.  Permutations avoiding an increasing number of length-increasing forbidden subsequences , 2000, Discret. Math. Theor. Comput. Sci..

[9]  Renzo Sprugnoli,et al.  Binary words excluding a pattern and proper Riordan arrays , 2007, Discret. Math..

[10]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[11]  Renzo Sprugnoli,et al.  LEVEL GENERATING TREES AND PROPER RIORDAN ARRAYS , 2007 .

[12]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[13]  Renzo Sprugnoli,et al.  Mixed succession rules: The commutative case , 2010, J. Comb. Theory, Ser. A.

[14]  Renzo Pinzani,et al.  Jumping succession rules and their generating functions , 2003, Discret. Math..

[15]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[16]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .