Dark-field imaging with cylindrical-vector beams.

Dark-field illumination provides an imaging mode that rejects specular light, thereby highlighting edge features. We analyze dark-field imaging by using cylindrical vector beam illumination with a confocal microscope equipped with a microstructure fiber mode filter. A numerical model based on rigorous coupled-wave analysis has been used to analyze the method. We acquired images of separated edges features to investigate the edge separation resolution of the method. A through-focus comparison of azimuthal and radial polarization shows a measurable dependence of edge separation on polarization.

[1]  T. Brown,et al.  Primary aberrations in focused radially polarized vortex beams. , 2004, Optics express.

[2]  P Török,et al.  Cylindrical vector beam focusing through a dielectric interface: comment. , 2004, Optics express.

[3]  Thomas K. Gaylord,et al.  Rigorous coupled-wave analysis of metallic surface-relief gratings , 1986 .

[4]  Colin J R Sheppard,et al.  Annular pupils, radial polarization, and superresolution. , 2004, Applied optics.

[5]  Thomas G. Brown Inhomogeneous polarization in optical system design , 2002, International Optical Design Conference.

[6]  R. Webb Confocal optical microscopy , 1996 .

[7]  L. Helseth Roles of polarization, phase and amplitude in solid immersion lens systems , 2001, physics/0108064.

[8]  G. Michael Morris,et al.  Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings , 1995 .

[9]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[10]  R. Dorn,et al.  The focus of light – theoretical calculation and experimental tomographic reconstruction , 2001 .

[11]  D. Nyyssonen Theory of optical edge detection and imaging of thick layers , 1982 .

[12]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[13]  D. Hall,et al.  Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution. , 1994, Optics letters.

[14]  T G Brown,et al.  Longitudinal field modes probed by single molecules. , 2001, Physical review letters.

[15]  Thomas G. Brown,et al.  Longitudinal field imaging , 2003, SPIE BiOS.

[16]  Kathleen S. Youngworth,et al.  Focusing of high numerical aperture cylindrical-vector beams. , 2000, Optics express.

[17]  Thomas K. Gaylord,et al.  Rigorous coupled-wave analysis of grating diffraction— E-mode polarization and losses , 1983 .

[18]  T G Brown,et al.  Polarization-vortex-driven second-harmonic generation. , 2003, Optics letters.

[19]  T. Gaylord,et al.  Three-dimensional vector coupled-wave analysis of planar-grating diffraction , 1983 .

[20]  D. Hall,et al.  Vector-beam solutions of Maxwell's wave equation. , 1996, Optics letters.

[21]  T Dabbs,et al.  Fiber-optic confocal microscope: FOCON. , 1992, Applied optics.

[22]  T. Brown,et al.  Cylindrical vector beam focusing through a dielectric interface. , 2001, Optics express.

[23]  Gerd Leuchs,et al.  Focusing light to a tighter spot , 2000 .

[24]  Thomas G. Brown,et al.  Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy , 2001, SPIE BiOS.

[25]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[26]  C. Sheppard,et al.  Image formation in a fiber-optical confocal scanning microscope , 1991 .

[27]  Thomas G. Brown,et al.  Inhomogenous polarization in scanning optical microscopy , 2000, Photonics West - Biomedical Optics.