Convergence analysis of the general Gauss-Newton algorithm
暂无分享,去创建一个
[1] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[2] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[3] W. Rheinboldt. A unified convergence theory for a class of iterative processes. , 1968 .
[4] P. Deuflhard. A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting , 1974 .
[5] P. Deuflhard. A relaxation stratery for the modified Newton method , 1975 .
[6] K. Madsen. An Algorithm for Minimax Solution of Overdetermined Systems of Non-linear Equations , 1975 .
[7] Ludwig J. Cromme,et al. Eine Klasse von Verfahren zur Ermittlung bester nichtlinearer Tschebyscheff-Approximationen , 1975 .
[8] R. Schaback. Globale Konvergene von Verfahren Zur Nichtlinearen Approximation , 1976 .
[9] M. R. Osborne. Nonlinear least squares — the Levenberg algorithm revisited , 1976, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[10] Jorge J. Moré,et al. The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .
[11] L. Cromme. Strong uniqueness , 1978 .
[12] P. Gill,et al. Algorithms for the Solution of the Nonlinear Least-Squares Problem , 1978 .
[13] P. Deuflhard,et al. Affine Invariant Convergence Theorems for Newton’s Method and Extensions to Related Methods , 1979 .
[14] Axel Ruhe. Accelerated Gauss-Newton algorithms for nonlinear least squares problems , 1979 .
[15] Peter Deuflhard,et al. On rank-deficient pseudoinverses , 1980 .
[16] Larry Nazareth,et al. Some Recent Approaches to Solving Large Residual Nonlinear Least Squares Problems , 1980 .