Some extended results on the search for good convolutional codes

We provide useful results on two classes of convolutional codes: binary codes and nonbinary codes. The best codes or the best known codes for these two classes of convolutional codes are found, by computer search. Some of them are better than those found in the past. We specify these codes by their transfer function matrices, distance spectra, and information-weight spectra. Furthermore, we derive an upper bound on the free distances of binary-to-M-ary codes and q-ary-to-M-ary codes. Numerical values of this bound closely fit the computer-searched values.

[1]  Rolf Johannesson,et al.  Further results on binary convolutional codes with an optimum distance profile (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[2]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[3]  K. X. M. Tzeng,et al.  Convolutional Codes and 'Their Performance in Communication Systems , 1971 .

[4]  David G. Daut,et al.  New short constraint length convolutional code constructions for selected rational rates , 1982, IEEE Trans. Inf. Theory.

[5]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[6]  Lalit R. Bahl,et al.  Rate 1/2 convolutional codes with complementary generators , 1971, IEEE Trans. Inf. Theory.

[7]  Andrew J. Viterbi,et al.  Convolutional Codes and Their Performance in Communication Systems , 1971 .

[8]  William E. Ryan,et al.  Two classes of convolutional codes over GF(q) for q -ary orthogonal signaling , 1991, IEEE Trans. Commun..

[9]  Rolf Johannesson,et al.  A fast algorithm for computing distance spectrum of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[10]  V.W.S. Chan,et al.  Principles of Digital Communication and Coding , 1979 .

[11]  Knud J. Larsen Comments on 'An efficient algorithm for computing free distance' by Bahl, L., et al , 1973, IEEE Trans. Inf. Theory.

[12]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[13]  K. Larsen,et al.  Short convolutional codes with maximal free distance for rates 1/2, 1/3, and 1/4 (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[14]  Lalit R. Bahl,et al.  An efficient algorithm for computing free distance (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[15]  Erik Paaske,et al.  Short binary convolutional codes with maximal free distance for rates 2/3 and 3/4 (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[16]  Philippe Piret,et al.  Multiple-word correcting convolutional codes , 1984, IEEE Trans. Inf. Theory.

[17]  Jean Conan The Weight Spectra of Some Short Low-Rate Convolutional Codes , 1984, IEEE Trans. Commun..

[18]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[19]  Eric S. Lander,et al.  AN ALGEBRAIC APPROACH , 1983 .

[20]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .