Modeling by composition

Functional composition can be computed efficiently, robustly, and precisely over polynomials and piecewise polynomials represented in the Bezier and B-spline forms (DeRose et al., 1993) [13], (Elber, 1992) [3], (Liu and Mann, 1997) [14]. Nevertheless, the applications of functional composition in geometric modeling have been quite limited. In this work, as a testimony to the value of functional composition, we first recall simple applications to curve-curve and curve-surface composition, and then more extensively explore the surface-surface composition (SSC) in geometric modeling. We demonstrate the great potential of functional composition using several non-trivial examples of the SSC operator, in geometric modeling applications: blending by composition, untrimming by composition, and surface distance bounds by composition.

[1]  Stephen Mann,et al.  An optimal algorithm for expanding the composition of polynomials , 1997, TOGS.

[2]  Gershon Elber,et al.  Error bounded variable distance offset operator for free form curves and surfaces , 1991, Int. J. Comput. Geom. Appl..

[3]  Reuven Bar-Yehuda,et al.  Matching of freeform curves , 1997, Comput. Aided Des..

[4]  Feng Jie Functional Compositions via Shifting Operators for Bézier Patches and Their Applications , 1999 .

[5]  K. Mørken Some identities for products and degree raising of splines , 1991 .

[6]  Qunsheng Peng,et al.  B-spline free-form deformation of polygonal objects through fast functional composition , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[7]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[8]  Gershon Elber,et al.  Symbolic and Numeric Computation in Curve Interrogation , 1995, Comput. Graph. Forum.

[9]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[10]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[11]  Kwansik Kimy,et al.  A Symbolic Approach to Freeform Surface Blends , 1996 .

[12]  Bert Jüttler,et al.  Geometric Modeling and Processing , 2009, Comput. Aided Geom. Des..

[13]  Ralph R. Martin,et al.  Survey A survey of blending methods that use parametric surfaces , 2002 .

[14]  Gershon Elber,et al.  A Symbolic Approach to Freeform Parametric Surface Blends , 1997 .

[15]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[16]  Peng Qun-sheng,et al.  Functional Compositions via Shifting Operators for B´ ezier Patches and Their Applications , 1999 .

[17]  Gershon Elber,et al.  Precise Voronoi cell extraction of free-form rational planar closed curves , 2005, SPM '05.

[18]  W. McLean,et al.  COMPUTING THE HAUSDORFF DISTANCE BETWEEN TWO SETS OF PARAMETRIC CURVES , 2013 .

[19]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[20]  Gershon Elber,et al.  Artistic Surface Rendering Using Layout of Text , 2002, Comput. Graph. Forum.

[21]  Michael S. Blum Modeling the Film Hierarchy in Computer Animation Final Reading Approval Approved for the Major Department , 1992 .

[22]  Gershon Elber,et al.  Hausdorff and Minimal Distances between Parametric Freeforms in R2 and R3 , 2008, GMP.

[23]  Gershon Elber,et al.  Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer , 2010, The Visual Computer.

[24]  Xianming Chen,et al.  Sliding windows algorithm for B-spline multiplication , 2007, Symposium on Solid and Physical Modeling.

[25]  Ron Goldman,et al.  Functional composition algorithms via blossoming , 1993, TOGS.

[26]  Pierre Alliez,et al.  Anisotropic Rectangular Metric for Polygonal Surface Remeshing , 2012, IMR.

[27]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[28]  Gershon Elber,et al.  Comparing Offset Curve Approximation Methods , 1997, IEEE Computer Graphics and Applications.

[29]  Gershon Elber Global error bounds and amelioration of sweep surfaces , 1997, Comput. Aided Des..

[30]  Martin Peternell Geometric Properties of Bisector Surfaces , 2000, Graph. Model..