Perspective: Stochastic algorithms for chemical kinetics.

We outline our perspective on stochastic chemical kinetics, paying particular attention to numerical simulation algorithms. We first focus on dilute, well-mixed systems, whose description using ordinary differential equations has served as the basis for traditional chemical kinetics for the past 150 years. For such systems, we review the physical and mathematical rationale for a discrete-stochastic approach, and for the approximations that need to be made in order to regain the traditional continuous-deterministic description. We next take note of some of the more promising strategies for dealing stochastically with stiff systems, rare events, and sensitivity analysis. Finally, we review some recent efforts to adapt and extend the discrete-stochastic approach to systems that are not well-mixed. In that currently developing area, we focus mainly on the strategy of subdividing the system into well-mixed subvolumes, and then simulating diffusional transfers of reactant molecules between adjacent subvolumes together with chemical reactions inside the subvolumes.

[1]  H. Othmer,et al.  A new method for choosing the computational cell in stochastic reaction–diffusion systems , 2012, Journal of mathematical biology.

[2]  Andreas Hellander,et al.  A Hierarchy of Approximations of the Master Equation Scaled by a Size Parameter , 2008, J. Sci. Comput..

[3]  Van Kampen,et al.  The Expansion of the Master Equation , 2007 .

[4]  Andreas Hellander,et al.  Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes , 2008, SIAM J. Sci. Comput..

[5]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[6]  Kevin R. Sanft,et al.  Legitimacy of the stochastic Michaelis-Menten approximation. , 2011, IET systems biology.

[7]  D. Gillespie,et al.  A diffusional bimolecular propensity function. , 2009, The Journal of chemical physics.

[8]  Radek Erban,et al.  The two-regime method for optimizing stochastic reaction–diffusion simulations , 2012, Journal of The Royal Society Interface.

[9]  R. Metzler The Future is Noisy , 2001 .

[10]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[11]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[12]  Hong Li,et al.  Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. , 2004, The Journal of chemical physics.

[13]  Sheng Wu,et al.  StochKit2: software for discrete stochastic simulation of biochemical systems with events , 2011, Bioinform..

[14]  G. S. Long,et al.  Discrete simulation methods in combustion kinetics , 1974 .

[15]  Wonryull Koh,et al.  An accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems using gradient-based diffusion and tau-leaping. , 2011, The Journal of chemical physics.

[16]  Andreas Hellander,et al.  URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries , 2012, BMC Systems Biology.

[17]  R. Grima Intrinsic biochemical noise in crowded intracellular conditions , 2010 .

[18]  Bernie J Daigle,et al.  Automated estimation of rare event probabilities in biochemical systems. , 2011, The Journal of chemical physics.

[19]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[20]  Philipp Thomas,et al.  How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? , 2011, The Journal of chemical physics.

[21]  Tetsuo Nakanishi,et al.  Time Dependent Fluctuation in a Nonlinear Chemical System , 1976 .

[22]  J. Elf,et al.  Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. , 2004, Systems biology.

[23]  M. Chaplain,et al.  Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation , 2013, Journal of The Royal Society Interface.

[24]  Andreas Hellander,et al.  An adaptive algorithm for simulation of stochastic reaction-diffusion processes , 2010, J. Comput. Phys..

[25]  Martin Howard,et al.  Stochastic model for Soj relocation dynamics in Bacillus subtilis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Šolc,et al.  Simulation of first-order chemical reaction as a stochastic process on a digital computer , 1972 .

[27]  D. A. Mcquarrie Stochastic approach to chemical kinetics , 1967, Journal of Applied Probability.

[28]  Anne Auger,et al.  R-leaping: accelerating the stochastic simulation algorithm by reaction leaps. , 2006, The Journal of chemical physics.

[29]  Dirk P. Kroese,et al.  The Cross-Entropy Method , 2011, Information Science and Statistics.

[30]  R Metzler,et al.  The future is noisy: the role of spatial fluctuations in genetic switching. , 2001, Physical review letters.

[31]  Min K Roh,et al.  State-dependent biasing method for importance sampling in the weighted stochastic simulation algorithm. , 2010, The Journal of chemical physics.

[32]  T. Kurtz Strong approximation theorems for density dependent Markov chains , 1978 .

[33]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[34]  K. McNeil,et al.  Correlations in stochastic theories of chemical reactions , 1976 .

[35]  George E. Kimball,et al.  Diffusion-controlled reaction rates , 1949 .

[36]  David F. Anderson,et al.  An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains , 2011, SIAM J. Numer. Anal..

[37]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[38]  Tetsuo Nakanishi,et al.  Stochastic Analysis of an Oscillating Chemical Reaction , 1972 .

[39]  M. Doi Second quantization representation for classical many-particle system , 1976 .

[40]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[41]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[42]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[43]  Muruhan Rathinam,et al.  Consistency and Stability of Tau-Leaping Schemes for Chemical Reaction Systems , 2005, Multiscale Model. Simul..

[44]  T. Kurtz Representations of Markov Processes as Multiparameter Time Changes , 1980 .

[45]  Daniel T. Gillespie,et al.  Simple Brownian Diffusion: An Introduction to the Standard Theoretical Models , 2012 .

[46]  Muruhan Rathinam,et al.  Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. , 2010, The Journal of chemical physics.

[47]  Sotiria Lampoudi,et al.  Effect of excluded volume on 2D discrete stochastic chemical kinetics , 2009, J. Comput. Phys..

[48]  Hiroyuki Kuwahara,et al.  An efficient and exact stochastic simulation method to analyze rare events in biochemical systems. , 2008, The Journal of chemical physics.

[49]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[51]  S. Isaacson A convergent reaction-diffusion master equation. , 2012, Journal of Chemical Physics.

[52]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[53]  I. Horsak,et al.  Simulation study of a stochastic model of reversible first-order reaction equilibrium , 1973 .

[54]  João Pedro Hespanha,et al.  Approximate Moment Dynamics for Chemically Reacting Systems , 2011, IEEE Transactions on Automatic Control.

[55]  D. Gillespie,et al.  Effect of reactant size on discrete stochastic chemical kinetics. , 2007, The Journal of chemical physics.

[56]  Linda R Petzold,et al.  Refining the weighted stochastic simulation algorithm. , 2009, The Journal of chemical physics.

[57]  Min K. Roh,et al.  State-dependent doubly weighted stochastic simulation algorithm for automatic characterization of stochastic biochemical rare events. , 2011, The Journal of chemical physics.

[58]  David F Anderson,et al.  A modified next reaction method for simulating chemical systems with time dependent propensities and delays. , 2007, The Journal of chemical physics.

[59]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[60]  Daniel T. Gillespie,et al.  Simulation Methods in Systems Biology , 2008, SFM.

[61]  Paulette Clancy,et al.  Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm. , 2010, The Journal of chemical physics.

[62]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.

[63]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[64]  Sotiria Lampoudi,et al.  The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. , 2009, The Journal of chemical physics.

[65]  S. Isaacson,et al.  Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  M. Delbrück Statistical Fluctuations in Autocatalytic Reactions , 1940 .

[67]  D. Gillespie The chemical Langevin equation , 2000 .

[68]  T. Kurtz Solutions of ordinary differential equations as limits of pure jump markov processes , 1970, Journal of Applied Probability.

[69]  Jared E. Toettcher,et al.  Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity , 2005, Cell.

[70]  Samuel A. Isaacson,et al.  Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations , 2006, SIAM J. Sci. Comput..

[71]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[72]  Muruhan Rathinam,et al.  The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. , 2004, The Journal of chemical physics.

[73]  Charles S. Peskin,et al.  The influence of volume exclusion by chromatin on the time required to find specific DNA binding sites by diffusion , 2011, Proceedings of the National Academy of Sciences.

[74]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[75]  Mark A. Stalzer,et al.  Efficient Formulations for Exact Stochastic Simulation of Chemical Systems , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[76]  J. Elf,et al.  Stochastic reaction-diffusion kinetics in the microscopic limit , 2010, Proceedings of the National Academy of Sciences.

[77]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[78]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[79]  D. Gillespie,et al.  Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. , 2012, IET systems biology.

[80]  David Fange,et al.  Noise-Induced Min Phenotypes in E. coli , 2006, PLoS Comput. Biol..

[81]  Samuel A. Isaacson,et al.  The Reaction-Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target , 2009, SIAM J. Appl. Math..

[82]  D. Gillespie,et al.  Deterministic limit of stochastic chemical kinetics. , 2009, The journal of physical chemistry. B.

[83]  Yang Cao,et al.  Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems , 2005 .

[84]  Aidan P Thompson,et al.  A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. , 2008, The Journal of chemical physics.

[85]  Daniel T. Gillespie,et al.  The multivariate Langevin and Fokker–Planck equations , 1996 .

[86]  D. Gillespie The mathematics of Brownian motion and Johnson noise , 1996 .

[87]  Brian Drawert,et al.  The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. , 2010, The Journal of chemical physics.

[88]  D. Gillespie,et al.  Accelerated stochastic simulation of the stiff enzyme-substrate reaction. , 2005, The Journal of chemical physics.

[89]  P. T. Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005 .

[90]  I. Horsak,et al.  Simulation of stochastic models of higher-order reactions , 1975 .

[91]  Diego Rossinelli,et al.  Accelerated stochastic and hybrid methods for spatial simulations of reaction–diffusion systems , 2008 .

[92]  Andreas Hellander,et al.  Coupled Mesoscopic and Microscopic Simulation of Stochastic Reaction-Diffusion Processes in Mixed Dimensions , 2012, Multiscale Model. Simul..

[93]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[94]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[95]  Nagiza F. Samatova,et al.  The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior , 2006, Comput. Biol. Chem..

[96]  Tatiana T Marquez-Lago,et al.  Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. , 2007, The Journal of chemical physics.

[97]  L. Petzold,et al.  Reaction-diffusion master equation in the microscopic limit. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.