Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA

[1]  Zhong Li,et al.  ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means , 2021, Briefings Bioinform..

[2]  Yixue Li,et al.  Integrated genomic and transcriptomic analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal adenocarcinoma , 2021, Genome Biology.

[3]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[4]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[5]  Hung Nguyen,et al.  Fast and precise single-cell data analysis using hierarchical autoencoder , 2019, bioRxiv.

[6]  A. Sapino,et al.  Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining , 2020, bioRxiv.

[7]  Liang Chen,et al.  Deep soft K-means clustering with self-training for single-cell RNA sequence data , 2020, NAR genomics and bioinformatics.

[8]  Xiang Chen,et al.  An Adaptive Sparse Subspace Clustering for Cell Type Identification , 2020, Frontiers in Genetics.

[9]  P. Proost,et al.  Neutrophil chemoattractant receptors in health and disease: double-edged swords , 2020, Cellular & Molecular Immunology.

[10]  Shibiao Wan,et al.  SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection , 2020, Genome research.

[11]  G. Dreyfuss,et al.  U1 snRNP regulates cancer cell migration and invasion , 2019, bioRxiv.

[12]  Gary D. Bader,et al.  Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data , 2019, bioRxiv.

[13]  Yun-Gui Yang,et al.  Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma , 2019, Cell Research.

[14]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[15]  Ji Wan,et al.  Clustering single-cell RNA-seq data with a model-based deep learning approach , 2019, Nature Machine Intelligence.

[16]  Rafael A. Irizarry,et al.  Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model , 2019, Genome Biology.

[17]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[18]  Atul J. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[19]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[20]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[21]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[22]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[23]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[24]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[25]  H. Friess,et al.  Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer , 2018, Molecular Cancer.

[26]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[27]  R. Darnell,et al.  Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation , 2018, Nature Communications.

[28]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[29]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[30]  Benjamin J. Raphael,et al.  Network propagation: a universal amplifier of genetic associations , 2017, Nature Reviews Genetics.

[31]  R. Jesenofsky,et al.  Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells , 2017, Oncotarget.

[32]  J. George,et al.  Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes , 2017, Genome research.

[33]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[34]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[35]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[36]  D. M. Smith,et al.  Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes , 2016, Cell metabolism.

[37]  R. Stewart,et al.  Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm , 2016, Genome Biology.

[38]  Mauro J. Muraro,et al.  De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.

[39]  Anna Huttenlocher,et al.  Neutrophil migration in infection and wound repair: going forward in reverse , 2016, Nature Reviews Immunology.

[40]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[41]  Wei Lu,et al.  Deep Neural Networks for Learning Graph Representations , 2016, AAAI.

[42]  Stein Aerts,et al.  iRegulon and i‐cisTarget: Reconstructing Regulatory Networks Using Motif and Track Enrichment , 2015, Current protocols in bioinformatics.

[43]  Hui Wang,et al.  SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis , 2015, PLoS Comput. Biol..

[44]  Aleksandra A. Kolodziejczyk,et al.  The technology and biology of single-cell RNA sequencing. , 2015, Molecular cell.

[45]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[46]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[47]  Natasa Przulj,et al.  Topology-function conservation in protein–protein interaction networks , 2015, Bioinform..

[48]  A. Saliba,et al.  Single-cell RNA-seq: advances and future challenges , 2014, Nucleic acids research.

[49]  Q. Morris,et al.  Labeling Nodes Using Three Degrees of Propagation , 2012, PloS one.

[50]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[51]  L. Attardi,et al.  Deconstructing p53 transcriptional networks in tumor suppression. , 2012, Trends in cell biology.

[52]  Gerald T. Quon,et al.  Unsupervised detection of genes of influence in lung cancer using biological networks , 2011, Bioinform..

[53]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[54]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[55]  P. Shah,et al.  CD154 Deficiency Uncouples Allograft CD8+ T‐Cell Effector Function from Proliferation and Inhibits Murine Airway Obliteration , 2009, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[56]  A. Levine,et al.  The first 30 years of p53: growing ever more complex , 2009, Nature Reviews Cancer.

[57]  M. Pollak,et al.  Insulin and insulin-like growth factor signalling in neoplasia , 2008, Nature Reviews Cancer.

[58]  Gordana Ivosev,et al.  Dimensionality reduction and visualization in principal component analysis. , 2008, Analytical chemistry.

[59]  J. Gribben,et al.  Temporal genetic program following B-cell receptor cross-linking: altered balance between proliferation and death in healthy and malignant B cells. , 2007, Blood.