Empirical Prediction of Leaf Area Index (LAI) of Endangered Tree Species in Intact and Fragmented Indigenous Forests Ecosystems Using WorldView-2 Data and Two Robust Machine Learning Algorithms

Leaf area index (LAI) is an important biophysical trait for forest ecosystem and ecological modeling, as it plays a key role for the forest productivity and structural characteristics. The ground-based methods like the handheld optical instruments for predicting LAI are subjective, pricy and time-consuming. The advent of very high spatial resolutions multispectral data and robust machine learning regression algorithms like support vector machines (SVM) and artificial neural networks (ANN) has provided an opportunity to estimate LAI at tree species level. The objective of the this study was therefore to test the utility of spectral vegetation indices (SVI) calculated from the multispectral WorldView-2 (WV-2) data in predicting LAI at tree species level using the SVM and ANN machine learning regression algorithms. We further tested whether there are significant differences between LAI of intact and fragmented (open) indigenous forest ecosystems at tree species level. The study shows that LAI at tree species level could accurately be estimated using the fragmented stratum data compared with the intact stratum data. Specifically, our study shows that the accurate LAI predictions were achieved for Hymenocardia ulmoides using the fragmented stratum data and SVM regression model based on a validation dataset (R2Val = 0.75, RMSEVal = 0.05 (1.37% of the mean)). Our study further showed that SVM regression approach achieved more accurate models for predicting the LAI of the six endangered tree species compared with ANN regression method. It is concluded that the successful application of the WV-2 data, SVM and ANN methods in predicting LAI of six endangered tree species in the Dukuduku indigenous forest could help in making informed decisions and policies regarding management, protection and conservation of these endangered tree species.

[1]  Eduardo S Brondízio,et al.  Accuracy of Neural Network and Regression Leaf Area Estimators for the Amazon Basin , 2007 .

[2]  Sunday O. Olatunji,et al.  Performance Comparison of SVM and ANN in Predicting Compressive Strength of Concrete , 2014 .

[3]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[4]  R. Houborg,et al.  Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data , 2008 .

[5]  Simon A. Corne,et al.  Predicting forest attributes In southeast Alaska using artificial neural networks , 2004 .

[6]  Jan de Leeuw,et al.  Discriminating species using hyperspectral indices at leaf and canopy scales. The International Arch , 2007 .

[7]  M. Cho,et al.  ESTIMATING LEAF AREA INDEX ( LAI ) BY INVERSION OF PROSAIL RADIATIVE TRANSFER MODEL USING , 2015 .

[8]  Sandipan Das,et al.  Correlation analysis between biomass and spectral vegetation indices of forest ecosystem , 2012 .

[9]  Zhengdong Zhang,et al.  Comparison of artificial neural network and support vector machine methods for urban land use/cover classifications from remote sensing images A Case Study of Guangzhou, South China , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[10]  Clement Atzberger,et al.  Derivation of biophysical variables from Earth observation data: validation and statistical measures , 2012 .

[11]  S. Moulin Impacts of model parameter uncertainties on crop reflectance estimates: a regional case study on wheat , 1999 .

[12]  Clement Atzberger,et al.  Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Lorenzo Bruzzone,et al.  The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. , 2007 .

[14]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[15]  Linsheng Huang,et al.  Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat , 2013 .

[16]  Sylvain G. Leblanc,et al.  Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[18]  Michael T. Manry,et al.  Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .

[19]  F. J. García-Haro,et al.  A generalized soil-adjusted vegetation index , 2002 .

[20]  P. J. García Nieto,et al.  Support vector machines and neural networks used to evaluate paper manufactured using Eucalyptus globulus , 2012 .

[21]  F. Baret,et al.  Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products , 2008 .

[22]  Jinfei Wang,et al.  Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data , 2004 .

[23]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[24]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[25]  Onisimo Mutanga,et al.  Evaluating the robustness of models developed from field spectral data in predicting African grass foliar nitrogen concentration using WorldView-2 image as an independent test dataset , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[26]  Jun Wang,et al.  Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar , 2013 .

[27]  W. Ju,et al.  Combining remote sensing imagery and forest age inventory for biomass mapping. , 2007, Journal of environmental management.

[28]  Ranga B. Myneni,et al.  Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000-2005 , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[30]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[31]  Zhang-hua Lou,et al.  A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands , 2011, Precision Agriculture.

[32]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[33]  William F. Laurance,et al.  Tropical forest fragmentation and greenhouse gas emissions , 1998 .

[34]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[35]  A. Gitelson,et al.  Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening , 1999 .

[36]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[37]  Adina Tillack,et al.  Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices , 2014 .

[38]  Qinhuo Liu,et al.  Regional Leaf Area Index Retrieval Based on Remote Sensing: The Role of Radiative Transfer Model Selection , 2015, Remote. Sens..

[39]  John J. A. Ingram,et al.  Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks , 2005 .

[40]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[41]  Achim Zeileis,et al.  Conditional variable importance for random forests , 2008, BMC Bioinformatics.

[42]  O. Mutanga,et al.  Estimating the road edge effect on adjacent Eucalyptus grandis forests in KwaZulu-Natal, South Africa, using texture measures and an artificial neural network , 2012 .

[43]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[44]  K. Soudani,et al.  Estimation of forest leaf area index from SPOT imagery using NDVI distribution over forest stands , 2006 .

[45]  Antonio Novelli,et al.  Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index , 2015, International Conference on Remote Sensing and Geoinformation of Environment.

[46]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[47]  O. Mutanga,et al.  Application of topo-edaphic factors and remotely sensed vegetation indices to enhance biomass estimation in a heterogeneous landscape in the Eastern Arc Mountains of Tanzania , 2016 .

[48]  Nadine Gobron,et al.  Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications , 2000, IEEE Trans. Geosci. Remote. Sens..

[49]  Jianchu Xu,et al.  Mapping Leaf Area Index in subtropical upland ecosystems using RapidEye imagery and the randomForest algorithm , 2014 .

[50]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[51]  M. Huston,et al.  A comparison of direct and indirect methods for estimating forest canopy leaf area , 1991 .

[52]  Hongliang Fang,et al.  Retrieving leaf area index with a neural network method: simulation and validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  Ruiliang Pu,et al.  Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index , 2003, IEEE Trans. Geosci. Remote. Sens..

[54]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[55]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[56]  Oliviero Carugo,et al.  Data Mining Techniques for the Life Sciences , 2009, Methods in Molecular Biology.

[57]  K. Moffett,et al.  Remote Sens , 2015 .

[58]  Luis Alonso,et al.  Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[59]  John R. Jensen,et al.  Opening the black box of neural networks for remote sensing image classification , 2004 .

[60]  Onisimo Mutanga,et al.  Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods , 2015 .

[61]  Liu Xiang-nan Xiu Li-na,et al.  Current Status and Future Direction of the Study on Artificial Neural Network Classification Processing in Remote Sensing , 2011 .

[62]  Jinfei Wang,et al.  Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific , 2005 .

[63]  Ruiliang Pu,et al.  Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in a mixed natural forest area in Florida, US , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[64]  Giles M. Foody,et al.  Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes , 2004 .

[65]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[66]  J. Hicke,et al.  Global synthesis of leaf area index observations: implications for ecological and remote sensing studies , 2003 .

[67]  Ibrahim Mohamed Suliman. Eldeen,et al.  Pharmacological investigation of some trees used in South African traditional medicine. , 2005 .

[68]  Onisimo Mutanga,et al.  Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[69]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .

[70]  R. Houborg,et al.  Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop and grasslands in five European landscapes , 2012 .

[71]  D. Deering Measuring forage production of grazing units from Landsat MSS data , 1975 .

[72]  Ruiliang Pu,et al.  Comparing Canonical Correlation Analysis with Partial Least Squares Regression in Estimating Forest Leaf Area Index with Multitemporal Landsat TM Imagery , 2012 .

[73]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[74]  R. Jackson,et al.  Interpreting vegetation indices , 1991 .

[75]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[76]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[77]  Nomzamo Bonisiwe Ndlovu,et al.  Quantifying indigenous forest change in Dukuduku from 1960 to 2008 using GIS and remote sensing techniques to support sustainable forest management planning , 2013 .

[78]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[79]  Galal Omer,et al.  Performance of Support Vector Machines and Artificial Neural Network for Mapping Endangered Tree Species Using WorldView-2 Data in Dukuduku Forest, South Africa , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[80]  J. Royston The W Test for Normality , 1982 .

[81]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[82]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[83]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[84]  G. Zhenga,et al.  Combining remote sensing imagery and forest age inventory for biomass mapping , 2007 .

[85]  A. Cutini,et al.  Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests , 1998 .

[86]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[87]  Tomaso Poggio,et al.  A Unified Framework for Regularization Networks and Support Vector Machines , 1999 .

[88]  Xiaojun Yang,et al.  Parameterizing Support Vector Machines for Land Cover Classification , 2011 .

[89]  Didier Tanré,et al.  Atmospherically resistant vegetation index (ARVI) for EOS-MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[90]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[91]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[92]  Arnon Karnieli,et al.  redicting forest structural parameters using the image texture derived from orldView-2 multispectral imagery in a dryland forest , Israel , 2011 .

[93]  N. Breda Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. , 2003, Journal of experimental botany.

[94]  D. Everard,et al.  Classification and dynamics of a southern African subtropical coastal lowland forest , 1996 .

[95]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[96]  Amélie Rajaud,et al.  A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman‐Monteith equation , 2008 .

[97]  Jason Weston,et al.  A user's guide to support vector machines. , 2010, Methods in molecular biology.

[98]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[99]  Onisimo Mutanga,et al.  Determining the susceptibility of Eucalyptus nitens forests to Coryphodema tristis (cossid moth) occurrence in Mpumalanga, South Africa , 2013, Int. J. Geogr. Inf. Sci..

[100]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[101]  A. Skidmore,et al.  Red edge shift and biochemical content in grass canopies , 2007 .

[102]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[103]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[104]  K. Soudani,et al.  Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands , 2006 .

[105]  L. Buydens,et al.  Comparing support vector machines to PLS for spectral regression applications , 2004 .

[106]  P. Itkonen ESTIMATING LEAF AREA INDEX AND ABOVEGROUND BIOMASS BY EMPIRICAL MODELING USING SPOT HRVIR SATELLITE IMAGERY IN THE TAITA HILLS, SE KENYA , 2012 .

[107]  T. E. Ntombela The impact of subsistence farming and informal settlement on Dukuduku Forest as a tourist resource , 2003 .

[108]  Anthony J. Ratkowski,et al.  Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery , 2005 .

[109]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[110]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[111]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[112]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[113]  J. P. Royston,et al.  Algorithm AS 181: The W Test for Normality , 1982 .

[114]  Andrew K. Skidmore,et al.  Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy , 2009 .

[115]  Paul M. Treitz,et al.  Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery , 2013, Remote. Sens..

[116]  N. Goel,et al.  Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation , 1994 .

[117]  James A. Smith,et al.  LAI inversion using a back-propagation neural network trained with a multiple scattering model , 1993, IEEE Trans. Geosci. Remote. Sens..

[118]  Mark O. Kimberley,et al.  Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR , 2011 .

[119]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .