Detection of Cross-Correlation between Gravitational Lensing and γ Rays.

In recent years, many γ-ray sources have been identified, yet the unresolved component hosts valuable information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of matter in the Universe has been shown to be a promising tool. We report here the first identification of a cross-correlation signal between γ rays and the distribution of mass in the Universe probed by weak gravitational lensing. We use data from the Dark Energy Survey Y1 weak lensing data and the Fermi Large Area Telescope 9-yr γ-ray data, obtaining a signal-to-noise ratio of 5.3. The signal is mostly localized at small angular scales and high γ-ray energies, with a hint of correlation at extended separation. Blazar emission is likely the origin of the small-scale effect. We investigate implications of the large-scale component in terms of astrophysical sources and particle dark matter emission.

[1]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[2]  M. Razzano,et al.  Unresolved Gamma-Ray Sky through its Angular Power Spectrum. , 2018, Physical review letters.

[3]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[4]  S. Horiuchi,et al.  Characterizing the local gamma-ray Universe via angular cross-correlations , 2018, Physical Review D.

[5]  D. Gerdes,et al.  Withdrawn as Duplicate: Survey geometry and the internal consistency of recent cosmic shear measurements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[6]  S. Ando,et al.  Modeling evolution of dark matter substructure and annihilation boost , 2018, Journal of Physics: Conference Series.

[7]  F. Calore,et al.  Dark matter constraints from dwarf galaxies: a data-driven analysis , 2018, Journal of Cosmology and Astroparticle Physics.

[8]  N. Yoshida,et al.  Correlation of extragalactic γ rays with cosmic matter density distributions from weak gravitational lensing , 2018, Physical Review D.

[9]  J. Frieman,et al.  Density split statistics: Cosmological constraints from counts and lensing in cells in DES Y1 and SDSS data , 2017, Physical Review D.

[10]  D. Thompson,et al.  3FHL: The Third Catalog of Hard Fermi-LAT Sources , 2017, 1702.00664.

[11]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.

[12]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[13]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[14]  R. Nichol,et al.  Dark Energy Survey year 1 results: Galaxy-galaxy lensing , 2017, Physical Review D.

[15]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[16]  S. More,et al.  Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters , 2017, 1707.01907.

[17]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[18]  Rachel Mandelbaum,et al.  Metacalibration: Direct Self-Calibration of Biases in Shear Measurement , 2017, 1702.02600.

[19]  H. Hoekstra,et al.  Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter , 2016, 1611.03554.

[20]  D. Gerdes,et al.  SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.

[21]  A. Slosar,et al.  Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.

[22]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[23]  F. Prada,et al.  Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation , 2016, 1608.07289.

[24]  B. Keating,et al.  Planck Lensing and Cosmic Infrared Background Cross-correlation with Fermi-LAT: Tracing Dark Matter Signals in the Gamma-Ray Background , 2016, 1608.04351.

[25]  N. Yoshida,et al.  Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic $\gamma$-ray background and cosmic shear , 2016, 1607.02187.

[26]  M. Razzano,et al.  Sensitivity projections for dark matter searches with the Fermi large area telescope , 2016, 1605.02016.

[27]  C. Baugh,et al.  Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios , 2016, 1602.07282.

[28]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[29]  E. Branchini,et al.  DARK MATTER SEARCHES IN THE GAMMA-RAY EXTRAGALACTIC BACKGROUND VIA CROSS-CORRELATIONS WITH GALAXY CATALOGS , 2015, 1506.01030.

[30]  R. Nichol,et al.  Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.

[31]  J. Read,et al.  Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs , 2015, 1504.02048.

[32]  E. Branchini,et al.  TOMOGRAPHY OF THE FERMI-LAT γ-RAY DIFFUSE EXTRAGALACTIC SIGNAL VIA CROSS CORRELATIONS WITH GALAXY CATALOGS , 2015, 1503.05918.

[33]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[34]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[35]  K. Bechtol,et al.  THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND AND IMPLICATIONS FOR DARK MATTER ANNIHILATION , 2015, 1501.05301.

[36]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[37]  M. Regis A Novel Approach in the WIMP Quest: Cross-Correlation of Gamma-Ray Anisotropies and Cosmic Shear , 2014 .

[38]  M. Fornasa,et al.  Tomographic-spectral approach for dark matter detection in the cross-correlation between cosmic shear and diffuse γ-ray emission , 2014, 1411.4651.

[39]  M. Regis,et al.  EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY , 2014, 1410.4997.

[40]  J. Chiang,et al.  THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV , 2014, The Astrophysical Journal.

[41]  Jiangang Hao,et al.  THE SLOAN DIGITAL SKY SURVEY COADD: 275 deg2 OF DEEP SLOAN DIGITAL SKY SURVEY IMAGING ON STRIPE 82 , 2014, The Astrophysical Journal.

[42]  B. Yanny,et al.  The Dark Energy Survey and operations: Year 1 , 2014, Astronomical Telescopes and Instrumentation.

[43]  N. Yoshida,et al.  Cross correlation of cosmic shear and extragalactic gamma-ray background: Constraints on the dark matter annihilation cross section , 2014, 1404.5503.

[44]  N. Fornengo,et al.  Particle dark matter searches in the anisotropic sky , 2013, Front. Physics.

[45]  E. Komatsu,et al.  Mapping dark matter in the gamma-ray sky with galaxy catalogs , 2013, 1312.4403.

[46]  Stanford,et al.  The flattening of the concentration–mass relation towards low halo masses and its implications for the annihilation signal boost , 2013, 1312.1729.

[47]  L. Latronico,et al.  DIFFUSE γ-RAY EMISSION FROM MISALIGNED ACTIVE GALACTIC NUCLEI , 2013 .

[48]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[49]  M. Fornasa,et al.  A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR , 2012, 1212.5018.

[50]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[51]  J. Chiang,et al.  GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE , 2012, The Astrophysical Journal.

[52]  Joel R. Primack,et al.  Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.

[53]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[54]  M. Bartelmann Gravitational lensing , 2010, 1010.3829.

[55]  J. Cembranos,et al.  Photon spectra from WIMP annihilation , 2010, 1009.4936.

[56]  E. Striani,et al.  FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG , 2010 .

[57]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[58]  S. Razzaque,et al.  MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST , 2009, 0905.1115.

[59]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[60]  E. Komatsu,et al.  Anisotropy of the cosmic gamma-ray background from dark matter annihilation , 2005, astro-ph/0512217.

[61]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[62]  Infn,et al.  Neutralino annihilation into gamma-rays in the Milky Way and in external galaxies , 2004, hep-ph/0407342.

[63]  C. Parvin An Introduction to Multivariate Statistical Analysis, 3rd ed. T.W. Anderson. Hoboken, NJ: John Wiley & Sons, 2003, 742 pp., $99.95, hardcover. ISBN 0-471-36091-0. , 2004 .

[64]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[65]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[66]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[67]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[68]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .