Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering

Hydrothermal carbonization can be defined as combined dehydration and decarboxy lation of a fuel to raise its carbon content with the aim of achieving a higher calorific value. It is realized by applying elevated temperatures (180–220°C) to biomass in a suspension with water under saturated pressure for several hours. With this conversion process, a lignite‐like, easy to handle fuel with well‐defined properties can be created from biomass residues, even with high moisture content. Thus it may contribute to a wider application of biomass for energetic purposes. Although hydrothermal carbonization has been known for nearly a century, it has received little attention in current biomass conversion research. This review summarizes knowledge about the chemical nature of this process from a process design point of view. Reaction mechanisms of hydrolysis, dehydration, decarboxylation, aromatization, and condensation polymerization are discussed and evaluated to describe important operational parameters qualitatively. The results are used to derive fundamental process design improvements. Copyright © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd

[1]  A. B. Fuertes,et al.  The production of carbon materials by hydrothermal carbonization of cellulose , 2009 .

[2]  Markus Antonietti,et al.  Effect of biochar amendment on soil carbon balance and soil microbial activity , 2009 .

[3]  A. B. Fuertes,et al.  Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. , 2009, Chemistry.

[4]  Markus Antonietti,et al.  Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid , 2009 .

[5]  Markus Antonietti,et al.  Hydrothermal carbon from biomass : a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. , 2008 .

[6]  Shu-Hong Yu,et al.  Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. , 2008, Dalton transactions.

[7]  G. Cui,et al.  Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. , 2008, Chemical communications.

[8]  Morgan Fröling,et al.  Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies , 2008 .

[9]  T. Minowa,et al.  Carbonization of Cellulose Using the Hydrothermal Method , 2008 .

[10]  D. Lehrmann,et al.  Hydrocarbon potential of Pennsylvanian coal in Bohai Gulf Basin, Eastern China, as revealed by hydrous pyrolysis , 2008 .

[11]  Hongwei Wu,et al.  Some Recent Advances in Hydrolysis of Biomass in Hot-Compressed Water and Its Comparisons with Other Hydrolysis Methods† , 2008 .

[12]  M. Antonietti,et al.  Aminated hydrophilic ordered mesoporous carbons , 2007 .

[13]  Markus Antonietti,et al.  A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization , 2007 .

[14]  Janusz A. Kozinski,et al.  Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion , 2007 .

[15]  Markus Antonietti,et al.  Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? , 2007 .

[16]  M. Antonietti,et al.  Replication and Coating of Silica Templates by Hydrothermal Carbonization , 2007 .

[17]  R. Runkel,et al.  Zur Kenntnis des thermoplastischen Verhaltens von Holz , 1953, Holz als Roh- und Werkstoff.

[18]  R. Runkel,et al.  Zur Kenntnis des thermoplastischen Verhaltens von Holz , 1951, Holz als Roh- und Werkstoff.

[19]  T. Wild Demineralisierung und Mechanisch Thermische Entwässerung von Braunkohlen und Biobrennstoffen , 2006 .

[20]  M. Antonietti,et al.  A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach , 2006 .

[21]  M. Antonietti,et al.  Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. , 2006, Small.

[22]  A. Sakoda,et al.  Production and Characterization of Carbonaceous Adsorbents from Biomass Wastes by Aqueous Phase Carbonization , 2005 .

[23]  João G. Crespo,et al.  Green Separation Processes: Fundamentals and Applications , 2005 .

[24]  Thallada Bhaskar,et al.  Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment , 2005 .

[25]  H. Uchida,et al.  Visualized Kinetic Aspects of Decomposition of a Wood Block in Sub- and Supercritical Water , 2005 .

[26]  F. Bergius Beiträge zur Theorie der Kohleentstehung , 2005, Naturwissenschaften.

[27]  E. Dinjus,et al.  Chemical reactions of C(1) compounds in near-critical and supercritical water. , 2004, Chemical reviews.

[28]  Markus Antonietti,et al.  From Starch to Metal/Carbon Hybrid Nanostructures: Hydrothermal Metal‐Catalyzed Carbonization , 2004 .

[29]  M. Lewan,et al.  Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis , 2004 .

[30]  B. Simoneit,et al.  Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions , 1999, Origins of life and evolution of the biosphere.

[31]  M. Lewan,et al.  Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions , 2003 .

[32]  Christian Bergins,et al.  Kinetics and mechanism during mechanical/thermal dewatering of lignite , 2003 .

[33]  Marc Marshall,et al.  Hydrothermal dewatering of lower rank coals. 3. High-concentration slurries from hydrothermally treated lower rank coals ☆ , 2003 .

[34]  George Favas,et al.  Hydrothermal dewatering of lower rank coals. 2. Effects of coal characteristics for a range of Australian and international coals , 2003 .

[35]  George Favas,et al.  Hydrothermal dewatering of lower rank coals. 1. Effects of process conditions on the properties of dried product , 2003 .

[36]  T. Minowa,et al.  Hot Compressed Water Treatment for Production of Charcoal from Wood , 2002 .

[37]  L. Racovalis,et al.  Effect of processing conditions on organics in wastewater from hydrothermal dewatering of low-rank coal , 2002 .

[38]  R. Wilkins,et al.  Coal as a source rock for oil: a review , 2002 .

[39]  P. Ortoleva,et al.  A model for lignin alteration - part I: a kinetic reaction-network model , 2001 .

[40]  A. Schimmelmann,et al.  Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis , 2001 .

[41]  A. Katritzky,et al.  Reactivity of organic compounds in superheated water: general background. , 2001, Chemical reviews.

[42]  B. Simoneit,et al.  The role of alkenes produced during hydrous pyrolysis of a shale , 2000 .

[43]  A. Katritzky,et al.  A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water , 2000 .

[44]  Kunio Arai,et al.  Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics , 1999 .

[45]  K. Strauss,et al.  Mechanisch-thermische Entwässerung von Braunkohle , 1999 .

[46]  F. Lichtenthaler Towards improving the utility of ketoses as organic raw materials , 1998 .

[47]  T. Ogi,et al.  Decomposition of Cellulose and Glucose in Hot-Compressed Water under Catalyst-Free Conditions , 1998 .

[48]  Phillip E. Savage,et al.  Decomposition of Formic Acid under Hydrothermal Conditions , 1998 .

[49]  A. Cohen,et al.  Petrographic changes induced by artificial coalification of peat : comparison of two planar facies (Rhizophora and Cladium) from the Everglades-mangrove complex of Florida and a domed facies (Cyrilla) from the Okefenokee Swamp of Georgia , 1997 .

[50]  David J. Clifford,et al.  The organic geochemistry of coal: from plant materials to coal , 1997 .

[51]  M. Lewan Experiments on the role of water in petroleum formation , 1997 .

[52]  A. C. Buchanan,et al.  Investigation of Reaction Pathways Involved in Lignin Maturation , 1997 .

[53]  S. Rudra,et al.  Effect of hydrothermal treatment on caking propensity of coal , 1996 .

[54]  C. B. Cecil,et al.  Experimental early-stage coalification of a peat sample and a peatified wood sample from Indonesia , 1996 .

[55]  T. Moore,et al.  Effects of experimental coalification on texture, composition and compaction in Indonesian peat and wood , 1996 .

[56]  P. Landais,et al.  Evolution of Asphaltenes during Artificial Maturation: A Record of the Chemical Processes , 1996 .

[57]  K. Hayamizu,et al.  Characterization of Thermally Decomposed Cellulose and Red Pine at 200.DEG.C. in Water. , 1996 .

[58]  P. Hatcher,et al.  Experimental simulation of gas generation from coals and a marine kerogen , 1995 .

[59]  P. Hatcher,et al.  Artificial coalification of a fossil wood from Brown coal by confined system pyrolysis , 1995 .

[60]  J. Hunt,et al.  Petroleum Geochemistry and Geology , 1995 .

[61]  P. Landais,et al.  Importance of the Reacting Medium in Artificial Maturation of a Coal by Confined Pyrolysis. 1. Hydrocarbons and Polar Compounds , 1995 .

[62]  H. Wallman Laboratory studies of a hydrothermal pretreatment process for municipal solid waste , 1995 .

[63]  L. Mansuy,et al.  閉込め熱分解による石炭の人工成熟における反応媒質の重要性 2 水及び極性化合物 , 1995 .

[64]  A. Zemann,et al.  Analysis of lignin degradation products by capillary electrophoresis , 1995 .

[65]  P. Landais,et al.  Are time and temperature the only constraints to the simulation of organic matter maturation , 1994 .

[66]  P. Landais,et al.  Artificial coalification: Comparison of confined pyrolysis and hydrous pyrolysis , 1994 .

[67]  G. Luijkx Hydrothermal conversion of carbohydrates and related compounds , 1994 .

[68]  O. Bobleter,et al.  Hydrothermal degradation of polymers derived from plants , 1994 .

[69]  Michael Jerry Antal,et al.  Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. Effects of the presence of water on the reaction mechanism , 1993 .

[70]  Michael Jerry Antal,et al.  Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water , 1992 .

[71]  J. Agnew,et al.  Thermal Upgrading of Low-Grade, Low-Rank South Australia Coal , 1992 .

[72]  M. Antal,et al.  Formation of charcoal from biomass in a sealed reactor , 1992 .

[73]  A. Katritzky,et al.  Reactivity of Organic Compounds in Hot Water: Geochemical and Technological Implications , 1991, Science.

[74]  D. Ross,et al.  Hydrothermal treatment and the oxygen functionalities in Wyodak coal , 1991 .

[75]  G. N. Richards,et al.  Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. , 1990, Carbohydrate research.

[76]  F. Goudriaan,et al.  Liquid fuels from biomass via a hydrothermal process , 1990 .

[77]  T. Machihara,et al.  Study of petroleum generation by compaction pyrolysis—I. Construction of a novel pyrolysis system with compaction and expulsion of pyrolyzate from source rock , 1990 .

[78]  B. Kuster,et al.  5‐Hydroxymethylfurfural (HMF). A Review Focussing on its Manufacture , 1990 .

[79]  A. Burnham,et al.  A chemical kinetic model of vitrinite maturation and reflectance , 1989 .

[80]  W. Schwald,et al.  Hydrothermolysis of Cellulose Under Static and Dynamic Conditions at High Temperatures , 1989 .

[81]  M. Roberts,et al.  Peat beneficiation by wet carbonization , 1987 .

[82]  R. Overend,et al.  Characterization and quantification of changes occurring in the low-severity dewatering of peat , 1987 .

[83]  J. Fohl,et al.  Entfernen von Wasser aus der Braunkohle. II: Thermische Entwässerungsverfahren , 1987 .

[84]  J. Fohl,et al.  Entfernen von Wasser aus der Braunkohle , 1987 .

[85]  W. Schwald,et al.  Chromatographic analysis of biomass reaction products produced by hydrothermolysis of poplar wood , 1987 .

[86]  A. Vargha,et al.  The effect of hydrothermal treatment on a Merseburg lignite , 1986 .

[87]  M. Lewan Evaluation of petroleum generation by hydrous phrolysis experimentation , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[88]  Ralph P. Overend,et al.  Biomass Liquefaction: An Overview , 1985 .

[89]  R. Kniep,et al.  Bonding Attitudes in Crystalline SeF4 and TeF4 , 1984 .

[90]  T. Hoering Thermal reactions of kerogen with added water, heavy water and pure organic substances , 1984 .

[91]  D. A. Nelson,et al.  Application of direct thermal liquefaction for the conversion of cellulosic biomass , 1984 .

[92]  R. Concin,et al.  Separation and identification of monomeric lignin degradation products by g.l.c.-mass spectrometry , 1983 .

[93]  J. N. Butler,et al.  Carbon Dioxide Equilibria and their Applications , 1982 .

[94]  N. Wright TIME, TEMPERATURE AND ORGANIC MATURATION‐the evolution of rank within a sedimentary pile , 1980 .

[95]  H. Binder,et al.  Dynamischer hydrothermaler Abbau von Holz , 1980 .

[96]  M. Lewan,et al.  Generation of Oil-Like Pyrolyzates from Organic-Rich Shales , 1979, Science.

[97]  S. Sarkar,et al.  Studies on artificial coal. 2. Thermogravimetry, plastometry and differential thermal analysis , 1976 .

[98]  S. Sarkar,et al.  Studies on artificial coal. 3. Polycondensates from aromatic hydrocarbons , 1976 .

[99]  S. Sarkar,et al.  Studies on artificial coal. 1. Caking power and chloroform extracts , 1974 .

[100]  David Evans,et al.  The brown-coal/water system: Part 3. Thermal dewatering of brown coal , 1972 .

[101]  H. Schafer Factors affecting the equilibrium moisture contents of low-rank coals , 1972 .

[102]  Hiroshi Tsukashima The Infrared Spectra of Artificial Coal made from Submerged Wood at Uozu, Toyama Prefecture, Japan , 1966 .

[103]  W. Freund,et al.  Die Veränderung des Lignins und seiner Kapillarstruktur unter den Bedingungen der Druckinkohlung in Gegenwart von Wasser , 1959 .

[104]  E. Leibnitz,et al.  Zur Kenntnis der Druckinkohlung von Braunkohlen in Gegenwart von Wasser. III , 1955 .

[105]  K. Kratzl,et al.  Über das Verhalten von Fichtenholz und Lignin bei thermischer Behandlung mit Wasser , 1952 .

[106]  Van Krevelen,et al.  Graphical-statistical method for the study of structure and reaction processes of coal , 1950 .

[107]  H. Howard,et al.  Aromatization of Cellulose by Heat , 1937 .

[108]  C. Schwalbe,et al.  Künstliche Torfbildung: Inkohlung von Sphagnummoos , 1933 .

[109]  H. Bode Die Inkohlung eine Druckverschwelung , 1932 .

[110]  E. Berl,et al.  Über die Entstehung der Kohlen. III. Die Inkohlung von Harzen und Wachsen in neutralem Medium , 1932 .

[111]  E. Berl,et al.  Über die Entstehung der Kohlen. II. Die Inkohlung von Cellulose und Lignin in neutralem Medium , 1932 .

[112]  O. Horn,et al.  Zur Frage der Entstehung der Steinkohlen , 1931 .

[113]  E. Berl,et al.  Über die Entstehung der Kohlen , 1930 .

[114]  Ross Aiken Gortner,et al.  The Cooking Process I—Role of Water in the Cooking of Wood1 , 1930 .

[115]  F. Bergius Holz und Kohle, chemische und wirtschaftliche Betrachtungen , 1928 .

[116]  E. Berl,et al.  Über das Verhalten der Cellulose bei der Druckerhitzung mit Wasser , 1928 .

[117]  J. Marcusson Struktur und Bildung der Huminsäuren und Kohlen , 1922 .

[118]  E. Heuser Künstliche Kohle aus dem Holzdämpfer , 1913 .

[119]  F. Bergius Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle , 1913 .

[120]  T. Huxley On the formation of coal. , 1890 .