Nonlinear multiphoton photo-cross-linking and photopolymerization of proteins and polymers in solution have been used to direct the three-dimensional assembly of micron scale objects. Two aspects of fabricated proteinatious matrixes are examined in this paper: the efficiency of protein photopolymerization and the application of fabricated matrixes as sustained release devices. The efficiency of photoactivated cross-linking of the proteins bovine serum albumin and fibrinogen, using rose bengal, have been determined and found to vary with photosensitizer concentration. This concentration dependence suggests that the mechanism for protein cross-linking is a direct hydrogen transfer between an amino acid residue of the protein and the dye molecule itself. A comparison of the surface structure of single and multiple protein oligomers is undertaken and shown to vary significantly depending on fabrication materials. Alkaline phosphatase bioactivity, upon entrapment in a protein structure, is maintained. The pro...