Focusing Singularity in a Derivative Nonlinear Schr\"odinger Equation

We present a numerical study of a derivative nonlinear Schr\"odinger equation with a general power nonlinearity, $|\psi|^{2\sigma}\psi_x$. In the $L^2$-supercritical regime, $\sigma>1$, our simulations indicate that there is a finite time singularity. We obtain a precise description of the local structure of the solution in terms of blowup rate and asymptotic profile, in a form similar to that of the nonlinear Schr\"odinger equation with supercritical power law nonlinearity.

[1]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[2]  B. Malomed,et al.  Self-steepening of ultrashort optical pulses without self-phase-modulation , 2007 .

[3]  J. Holmer,et al.  On Blow-up Solutions to the 3D Cubic Nonlinear Schrödinger Equation , 2010 .

[4]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[5]  Luis Vega,et al.  Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .

[6]  Terence Tao,et al.  A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..

[7]  Papanicolaou,et al.  Focusing singularity of the cubic Schrödinger equation. , 1986, Physical review. A, General physics.

[8]  George Papanicolaou,et al.  Stability of isotropic singularities for the nonlinear schro¨dinger equation , 1991 .

[9]  N. Gavish,et al.  Singular ring solutions of critical and supercritical nonlinear Schrödinger equations , 2007 .

[10]  Jyh-Hao Lee Global solvability of the derivative nonlinear Schrödinger equation , 1989 .

[11]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[12]  Nakao Hayashi,et al.  On the derivative nonlinear Schro¨dinger equation , 1992 .

[13]  Chengchun Hao Well-posedness for one-dimensional derivative nonlinear Schr\ , 2007, 0811.4222.

[14]  Sulem,et al.  Multidimensional modulation of Alfvén waves. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  N. Stolterfoht,et al.  絶縁性テトラフタル酸ポリエチレンにおけるナノ毛細管を通る低速Ne7+イオンの誘導:入射電流依存性 , 2007 .

[16]  Papanicolaou,et al.  Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. , 1988, Physical review. A, General physics.

[17]  E. Mjølhus,et al.  On the modulational instability of hydromagnetic waves parallel to the magnetic field , 1976, Journal of Plasma Physics.

[18]  Xiao Liu,et al.  Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation , 2012, J. Nonlinear Sci..

[19]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[20]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[21]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[22]  P. Miller,et al.  The semiclassical modified nonlinear Schrodinger equation I: Modulation theory and spectral analysis , 2007, nlin/0702028.

[23]  Lawrence F. Shampine,et al.  Singular boundary value problems for ODEs , 2003, Appl. Math. Comput..