Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex.

[1]  P. Vyas,et al.  Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. , 2011, Cancer cell.

[2]  M. Heuser,et al.  Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. , 2010, Blood.

[3]  Wolfram Goessling,et al.  The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML , 2010, Science.

[4]  P. Aplan,et al.  Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. , 2010, Blood.

[5]  J. Schwaller,et al.  Functional characterization of high levels of meningioma 1 as collaborating oncogene in acute leukemia , 2010, Leukemia.

[6]  M. Heuser,et al.  Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. , 2009, Blood.

[7]  G. Grosveld,et al.  Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation. , 2009, Blood.

[8]  M. Caligiuri,et al.  Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  S. Aparicio,et al.  Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. , 2009, Blood.

[10]  Howard Y. Chang,et al.  Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. , 2009, Cell stem cell.

[11]  M. Heuser,et al.  Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. , 2008, Experimental hematology.

[12]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[13]  Baolin Wu,et al.  Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. , 2008, Cancer cell.

[14]  R. Ono,et al.  AML1 mutations induced MDS and MDS/AML in a mouse BMT model. , 2008, Blood.

[15]  Heidi Dvinge,et al.  Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. , 2008, Cancer cell.

[16]  Scott A. Armstrong,et al.  MLL translocations, histone modifications and leukaemia stem-cell development , 2007, Nature Reviews Cancer.

[17]  M. Cleary,et al.  Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. , 2007, Genes & development.

[18]  A. Schambach,et al.  MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. , 2007, Blood.

[19]  S. Shurtleff,et al.  MN1 overexpression is an important step in the development of inv(16) AML , 2007, Leukemia.

[20]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[21]  Ying-Wei Lin,et al.  Retroviral insertional mutagenesis identifies genes that collaborate with NUP98-HOXD13 during leukemic transformation. , 2007, Cancer research.

[22]  K. Döhner,et al.  High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. , 2006, Blood.

[23]  W. Hiddemann,et al.  Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. , 2006, Cancer cell.

[24]  M. Cleary,et al.  Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. , 2006, Cancer cell.

[25]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[26]  A. Wan,et al.  The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. , 2006, Blood.

[27]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Akashi,et al.  MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. , 2004, Cancer cell.

[29]  Laurie E Ailles,et al.  Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. , 2004, The New England journal of medicine.

[30]  Arndt Borkhardt,et al.  Hoxa9 and Meis1 Are Key Targets for MLL-ENL-Mediated Cellular Immortalization , 2004, Molecular and Cellular Biology.

[31]  I. Weissman,et al.  Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. , 2003, Genes & development.

[32]  Irving L. Weissman,et al.  Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Buske,et al.  Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. , 2003, Blood.

[34]  C. Buske,et al.  Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. , 2001, Blood.

[35]  I. Weissman,et al.  AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  I. Weissman,et al.  A clonogenic common myeloid progenitor that gives rise to all myeloid lineages , 2000, Nature.

[37]  L. Kömüves,et al.  HOXA9 Forms Triple Complexes with PBX2 and MEIS1 in Myeloid Cells , 1999, Molecular and Cellular Biology.

[38]  Unnur Thorsteinsdottir,et al.  Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b , 1998, The EMBO journal.

[39]  J. Moskow,et al.  AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins , 1997, Molecular and cellular biology.

[40]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[41]  P. Riegman,et al.  Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. , 1995, Oncogene.

[42]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[43]  J. Till,et al.  COLONY ASSAY FOR PROLIFERATIVE BLAST CELLS CIRCULATING IN MYELOBLASTIC LEUKÆMIA , 1977, The Lancet.

[44]  J. Mccormick EMIGRATION AND MENTAL SUBNORMALITY IN NORTHERN IRELAND , 1974 .