An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems

In this paper, we modify the adaptive wavelet algorithm from Gantumur et al. [An optimal adaptive wavelet method without coarsening of the iterands, Technical Report 1325, Department of Mathematics, Utrecht University, March 2005, Math. Comp., to appear] so that it applies directly, i.e., without forming the normal equation, not only to self-adjoint elliptic operators but also to operators of the form L=A+B, where A is self-adjoint elliptic and B is compact, assuming that the resulting operator equation is well posed. We show that the algorithm has optimal computational complexity.

[1]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[2]  Rob P. Stevenson,et al.  Computation of Singular Integral Operators in Wavelet Coordinates , 2005, Computing.

[3]  Wolfgang Dahmen,et al.  Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..

[4]  Rob P. Stevenson,et al.  Computation of differential operators in wavelet coordinates , 2005, Math. Comput..

[5]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[6]  Hoang-Ngan Nguyen,et al.  Finite element wavelets for solving partial differential equations , 2005 .

[7]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[8]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[9]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[10]  M. Schechter Principles of Functional Analysis , 1971 .

[11]  Rob P. Stevenson,et al.  Composite Wavelet Bases with Extended Stability and Cancellation Properties , 2007, SIAM J. Numer. Anal..

[12]  J. Huisman The Netherlands , 1996, The Lancet.

[13]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[14]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[17]  Rob P. Stevenson,et al.  Wavelets with patchwise cancellation properties , 2006, Math. Comput..

[18]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[19]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[20]  Rob Stevenson,et al.  On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..

[21]  Reinhold Schneider,et al.  Biorthogonal wavelet bases for the boundary element method , 2004 .

[22]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[23]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[24]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[25]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[26]  Wendland W.L. Costabel M.,et al.  Strong ellipticity of boundary integral operators. , 1986 .

[27]  Stephan Dahlke,et al.  Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .

[28]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[29]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[30]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[31]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[32]  Stefano Berrone,et al.  An Adaptive WEM Algorithm for Solving Elliptic Boundary Value Problems in Fairly General Domains , 2006, SIAM J. Sci. Comput..

[33]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..

[34]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..

[35]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .