Prime factorization using quantum annealing and computational algebraic geometry

We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.

[1]  Jiangfeng Du,et al.  Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. , 2012, Physical review letters.

[2]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[3]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[4]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[5]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.

[6]  Endre Boros,et al.  Quadratization of Symmetric Pseudo-Boolean Functions , 2014, Discret. Appl. Math..

[7]  Cristian S. Calude,et al.  Guest Column: Adiabatic Quantum Computing Challenges , 2015, SIGA.

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  Raouf Dridi,et al.  Homology Computation of Large Point Clouds using Quantum Annealing , 2015, ArXiv.

[10]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[11]  Ryan Babbush,et al.  Construction of non-convex polynomial loss functions for training a binary classifier with quantum annealing , 2014, ArXiv.

[12]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[13]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[14]  Gernot Schallerralf THE ROLE OF SYMMETRIES IN ADIABATIC QUANTUM ALGORITHMS , 2010 .

[15]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[16]  Alán Aspuru-Guzik,et al.  Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.

[17]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[18]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[19]  Endre Boros,et al.  On quadratization of pseudo-Boolean functions , 2012, ISAIM.

[20]  Christopher J. C. Burges,et al.  Factoring as Optimization , 2002 .

[21]  R. Raussendorf Quantum computation, discreteness, and contextuality , 2009 .

[22]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[23]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[24]  Gernot Schaller,et al.  The role of symmetries in adiabatic quantum algorithms , 2007, Quantum Inf. Comput..

[25]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[26]  T. Monz,et al.  Realization of a scalable Shor algorithm , 2015, Science.

[27]  Aidan Roy,et al.  Discrete optimization using quantum annealing on sparse Ising models , 2014, Front. Phys..

[28]  Aidan Roy,et al.  Fast clique minor generation in Chimera qubit connectivity graphs , 2015, Quantum Inf. Process..

[29]  Graeme Smith,et al.  Oversimplifying quantum factoring , 2013, Nature.

[30]  Nikesh S. Dattani,et al.  Quantum factorization of 56153 with only 4 qubits , 2014, ArXiv.

[31]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[32]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[33]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[34]  Richard Tanburn,et al.  Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The "deduc-reduc" method and its application to quantum factorization of numbers , 2015, ArXiv.

[35]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.