Prime factorization using quantum annealing and computational algebraic geometry
暂无分享,去创建一个
[1] Jiangfeng Du,et al. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. , 2012, Physical review letters.
[2] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[3] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[4] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[5] Aidan Roy,et al. A practical heuristic for finding graph minors , 2014, ArXiv.
[6] Endre Boros,et al. Quadratization of Symmetric Pseudo-Boolean Functions , 2014, Discret. Appl. Math..
[7] Cristian S. Calude,et al. Guest Column: Adiabatic Quantum Computing Challenges , 2015, SIGA.
[8] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[9] Raouf Dridi,et al. Homology Computation of Large Point Clouds using Quantum Annealing , 2015, ArXiv.
[10] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[11] Ryan Babbush,et al. Construction of non-convex polynomial loss functions for training a binary classifier with quantum annealing , 2014, ArXiv.
[12] Daniel A. Lidar,et al. Experimental signature of programmable quantum annealing , 2012, Nature Communications.
[13] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..
[14] Gernot Schallerralf. THE ROLE OF SYMMETRIES IN ADIABATIC QUANTUM ALGORITHMS , 2010 .
[15] 今井 浩. 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .
[16] Alán Aspuru-Guzik,et al. Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.
[17] X-Q Zhou,et al. Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.
[18] M. W. Johnson,et al. Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.
[19] Endre Boros,et al. On quadratization of pseudo-Boolean functions , 2012, ISAIM.
[20] Christopher J. C. Burges,et al. Factoring as Optimization , 2002 .
[21] R. Raussendorf. Quantum computation, discreteness, and contextuality , 2009 .
[22] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[23] Alexei Y. Kitaev,et al. Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..
[24] Gernot Schaller,et al. The role of symmetries in adiabatic quantum algorithms , 2007, Quantum Inf. Comput..
[25] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[26] T. Monz,et al. Realization of a scalable Shor algorithm , 2015, Science.
[27] Aidan Roy,et al. Discrete optimization using quantum annealing on sparse Ising models , 2014, Front. Phys..
[28] Aidan Roy,et al. Fast clique minor generation in Chimera qubit connectivity graphs , 2015, Quantum Inf. Process..
[29] Graeme Smith,et al. Oversimplifying quantum factoring , 2013, Nature.
[30] Nikesh S. Dattani,et al. Quantum factorization of 56153 with only 4 qubits , 2014, ArXiv.
[31] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[32] Pablo A. Parrilo,et al. Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.
[33] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[34] Richard Tanburn,et al. Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The "deduc-reduc" method and its application to quantum factorization of numbers , 2015, ArXiv.
[35] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.