Communication between levels of transcriptional control improves robustness and adaptivity

[1]  M Madan Babu,et al.  Uncovering a hidden distributed architecture behind scale-free transcriptional regulatory networks. , 2006, Journal of molecular biology.

[2]  L. Aravind,et al.  Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. , 2006, Journal of molecular biology.

[3]  Trey Ideker,et al.  Integrated Assessment and Prediction of Transcription Factor Binding , 2006, PLoS Comput. Biol..

[4]  Hamid Bolouri,et al.  A data integration methodology for systems biology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  L. Hood,et al.  A data integration methodology for systems biology: experimental verification. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Boeke,et al.  Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. , 2005, Genes & development.

[7]  Yael Garten,et al.  Extraction of transcription regulatory signals from genome-wide DNA–protein interaction data , 2005, Nucleic acids research.

[8]  H. Hieronymus,et al.  Genome-wide mRNA surveillance is coupled to mRNA export. , 2004, Genes & development.

[9]  Nicola J. Rinaldi,et al.  Global position and recruitment of HATs and HDACs in the yeast genome. , 2004, Molecular cell.

[10]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[11]  V. Iyer,et al.  Global Role of TATA Box-Binding Protein Recruitment to Promoters in Mediating Gene Expression Profiles , 2004, Molecular and Cellular Biology.

[12]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[13]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[14]  S. Schreiber,et al.  Global nucleosome occupancy in yeast , 2004, Genome Biology.

[15]  P. Silver,et al.  Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. , 2004, Genes & development.

[16]  Saeed Tavazoie,et al.  Mapping Global Histone Acetylation Patterns to Gene Expression , 2004, Cell.

[17]  M. Gerstein,et al.  Genomic analysis of essentiality within protein networks. , 2004, Trends in genetics : TIG.

[18]  K. Struhl,et al.  Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. , 2004, Molecular cell.

[19]  K. Struhl,et al.  Genome-Wide Occupancy Profile of the RNA Polymerase III Machinery in Saccharomyces cerevisiae Reveals Loci with Incomplete Transcription Complexes , 2004, Molecular and Cellular Biology.

[20]  Pamela A. Silver,et al.  Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization , 2004, Cell.

[21]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[22]  Stuart L Schreiber,et al.  Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. , 2003, Molecular cell.

[23]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[24]  I. Simon,et al.  Program-Specific Distribution of a Transcription Factor Dependent on Partner Transcription Factor and MAPK Signaling , 2003, Cell.

[25]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[26]  Michael Grunstein,et al.  Requirement of Hos2 Histone Deacetylase for Gene Activity in Yeast , 2002, Science.

[27]  P. Silver,et al.  Intron status and 3'-end formation control cotranscriptional export of mRNA. , 2002, Genes & development.

[28]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[29]  Stuart L. Schreiber,et al.  Methylation of histone H3 Lys 4 in coding regions of active genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Ioannis Xenarios,et al.  Microarray Deacetylation Maps Determine Genome-Wide Functions for Yeast Histone Deacetylases , 2002, Cell.

[31]  Kevin Struhl,et al.  Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. , 2002, Genes & development.

[32]  I. Simon,et al.  The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. , 2002, Molecular cell.

[33]  John J. Wyrick,et al.  Genome-Wide Distribution of ORC and MCM Proteins in S. cerevisiae: High-Resolution Mapping of Replication Origins , 2001, Science.

[34]  Nicola J. Rinaldi,et al.  Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle , 2001, Cell.

[35]  David Botstein,et al.  Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association , 2001, Nature Genetics.

[36]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[37]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[38]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[39]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[40]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[41]  B. Kennedy,et al.  Localization of Sir2p: the nucleolus as a compartment for silent information regulators , 1997, The EMBO journal.