Two-step doping of SiO2 and CaO for high-frequency MnZn power ferrites

[1]  G. Vallejo-Fernandez,et al.  Development of a variable frequency, low current, low volume hysteresis loop tracer , 2022, Journal of Magnetism and Magnetic Materials.

[2]  Qiming Chen,et al.  Synergistic effect of V2O5 and Bi2O3 on the grain boundary structure of high-frequency NiCuZn ferrite ceramics , 2022, Journal of Advanced Ceramics.

[3]  Junwoo Park,et al.  A Short Review of the Effect of Iron Ore Selection on Mineral Phases of Iron Ore Sinter , 2021, Minerals.

[4]  W. Xiaoyu,et al.  Correlating the microstructure and magnetic properties of MnZn power ferrites via Co2O3 and MoO3 co-doping for MHz applications , 2021 .

[5]  G. Bai,et al.  High-frequency MnZn soft magnetic ferrite by engineering grain boundaries with multiple-ion doping , 2021, Journal of Materials Science & Technology.

[6]  Juan Li,et al.  Low temperature sintered MnZn ferrites for power applications at the frequency of 1 MHz , 2021 .

[7]  V. Harris,et al.  Grain boundary engineering of power inductor cores for MHz applications , 2020 .

[8]  S. Zuo,et al.  Microstructures and magnetic properties of Co-substituted Ce–Fe–B amorphous alloys , 2020, Journal of Alloys and Compounds.

[9]  A. Thakur,et al.  A review on MnZn ferrites: Synthesis, characterization and applications , 2020, Ceramics International.

[10]  Guo Lei,et al.  Effect of Calcination Temperature on Magnetic Properties of MnZn Ferrites for High Frequency Applications , 2019 .

[11]  M. Yan,et al.  Co2O3 and SnO2 doped MnZn ferrites for applications at 3–5 MHz frequencies , 2019, Ceramics International.

[12]  H. Ge,et al.  Effects of second milling time to the core loss of MnZn ferrites for high frequency application , 2019, Physica B: Condensed Matter.

[13]  Long-Qing Chen,et al.  From core–shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering , 2018 .

[14]  C. Yuan,et al.  Magnetostriction properties of oriented polycrystalline CoFe 2 O 4 , 2016 .

[15]  Sima Dimitrijev,et al.  Power-switching applications beyond silicon: Status and future prospects of SiC and GaN devices , 2015 .

[16]  F. Iacopi,et al.  Power electronics with wide bandgap materials: Toward greener, more efficient technologies , 2015 .

[17]  Feng Dang,et al.  Sonochemical coating of magnetite nanoparticles with silica. , 2010, Ultrasonics sonochemistry.

[18]  Mahavir Singh,et al.  IMPACT OF PROCESSING AND POLARIZATION ON DIELECTRIC BEHAVIOR OF NixMn0.4-xZn0.6Fe2O4 SPINEL FERRITES , 2009 .

[19]  H. Shokrollahi,et al.  Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites , 2007 .

[20]  M. Drofenik,et al.  High‐Resistivity Grain Boundaries in CaO‐Doped MnZn Ferrites for High‐Frequency Power Application , 2004 .

[21]  S. Sampath,et al.  Plasma-sprayed MnZn ferrites with insulated fine grains and increased resistivity for high-frequency applications , 2004, IEEE Transactions on Magnetics.

[22]  이종숙 Misorientation distribution of a Mn-Zn ferrite sample with abnormal grain growth , 2004 .

[23]  A. Fujita,et al.  Temperature dependence of core loss in Co-substituted MnZn ferrites , 2003 .

[24]  Z. Ka̧kol,et al.  Preparation and magnetic properties of MgZn and MnZn ferrites , 2003 .

[25]  W. H. Jeong,et al.  Effects of grain size on the residual loss of Mn–Zn ferrites , 2002 .

[26]  M. Pardavi-Horvath,et al.  Microwave applications of soft ferrites , 2000 .

[27]  M. Sugimoto The Past, Present, and Future of Ferrites , 1999 .

[28]  T. Nakamura,et al.  Low-temperature sintering of NiZnCu ferrite and its permeability spectra , 1997 .

[29]  T. Kokubo,et al.  Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2. , 1997, Biomaterials.

[30]  M. Rekveldt,et al.  A domain size effect in the magnetic hysteresis of NiZn‐ferrites , 1996 .

[31]  C. S. Jayanth,et al.  Factors affecting particle-coarsening kinetics and size distribution , 1989 .

[32]  D. Vladikova,et al.  Influence of the Microstructure on Some Microwave Properties of Substituted Nickel Ferrites , 1989, 16 January.

[33]  B. Malaman,et al.  Structure cristalline du ferrite hemicalcique CaFe4O7 , 1986 .

[34]  D. Huse,et al.  Pinning and roughening of domain walls in Ising systems due to random impurities. , 1985, Physical review letters.

[35]  H. Chihara,et al.  Microscopic study of grain‐boundary region in polycrystalline ferrites , 1985 .

[36]  Fumio Matsuno,et al.  Changes of Mineral Phases during the Sintering of Iron Ore-Lime Stone Systems , 1981 .

[37]  J. Fidler,et al.  Nucleation and pinning of magnetic domains at Co7Sm2 precipitates in Co5Sm crystals , 1979 .

[38]  G. Thomas,et al.  Microstructure and properties of commercial grade manganese zinc ferrites , 1979 .

[39]  M. Yan,et al.  Impurity-Induced Exaggerated Grain Growth in Mn-Zn Ferrites , 1978 .

[40]  R. Morineau,et al.  Chart of PO 2 versus temperature and oxidation degree for Mn-Zn ferrites in the composition range: 50 l Fe 2 O 3 l 54; 20 l MnO l 35; 11 l ZnO l 30 (mole %) , 1975 .

[41]  U. Konig Improved manganese-zinc ferrites for power transformers , 1975 .

[42]  K. Ohta Magnetocrystalline Anisotropy and Magnetic Permeability of Mn-Zn-Fe Ferrites , 1963 .

[43]  T. Akashi Effect of the Addition of CaO and SiO 2 on the Magnetic Characteristics and Microstructures of Manganese-Zinc Ferrites (Mn 0.68 Zn 0.21 Fe 2.11 O 4+δ ) , 1961 .

[44]  J. Kasper,et al.  The structure of calcium ferrite , 1957 .