Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery.

[1]  R. Misra,et al.  Biomaterials , 2008 .

[2]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Cooperberg,et al.  The changing face of prostate cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  Si-Shen Feng,et al.  Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. , 2005, Biomaterials.

[5]  E. Allémann,et al.  Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. , 2005, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[6]  Omid C. Farokhzad,et al.  Nanoparticle-Aptamer Bioconjugates , 2004, Cancer Research.

[7]  K. Avgoustakis,et al.  Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. , 2004, Current drug delivery.

[8]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[9]  H. Fessi,et al.  Physicochemical Parameters Associated with Nanoparticle Formation in the Salting-Out, Emulsification-Diffusion, and Nanoprecipitation Methods , 2004, Pharmaceutical Research.

[10]  S. Feng,et al.  Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. , 2004, Biomaterials.

[11]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[12]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[13]  R. Gurny,et al.  Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  S. Simões,et al.  Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[15]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[16]  D. S. Coffey,et al.  Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. , 2002, Cancer research.

[17]  P. Gellert,et al.  Polylactide-poly(ethylene Glycol) Micellar-like Particles as Potential Drug Carriers: Production, Colloidal Properties and Biological Performance , 2001, Journal of drug targeting.

[18]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[19]  J. Feijen,et al.  Freeze-Drying and Lyopreservation of Diblock and Triblock Poly(Lactic Acid)–Poly(Ethylene Oxide) (PLA–PEO) Copolymer Nanoparticles , 2000, Pharmaceutical development and technology.

[20]  W. Godwin Article in Press , 2000 .

[21]  S. W. Kim,et al.  Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/glycolide) nanospheres. , 1998, Journal of biomedical materials research.

[22]  Gert Storm,et al.  Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system , 1995 .

[23]  S. Davis,et al.  Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. , 1994, Critical reviews in therapeutic drug carrier systems.

[24]  Tae Gwan Park,et al.  Degradation of poly(d,l-lactic acid) microspheres: effect of molecular weight , 1994 .

[25]  N. Van Rooijen,et al.  Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. , 1994, Biochimica et biophysica acta.

[26]  N. Düzguneş Targeted drug delivery. , 1992, Journal of the California Dental Association.

[27]  S. Davis,et al.  The polyoxyethylene/polyoxypropylene block co‐polymer Poloxamer‐407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow , 1992, FEBS letters.

[28]  S. Davis,et al.  Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. , 1991, Biochemical and biophysical research communications.