Dynamic sub-ontology evolution for traditional Chinese medicine web ontology

As a form of important domain knowledge, large-scale ontologies play a critical role in building a large variety of knowledge-based systems. To overcome the problem of semantic heterogeneity and encode domain knowledge in reusable format, a large-scale and well-defined ontology is also required in the traditional Chinese medicine discipline. We argue that to meet the on-demand and scalability requirement ontology-based systems should go beyond the use of static ontology and be able to self-evolve and specialize for the domain knowledge they possess. In particular, we refer to the context-specific portions from large-scale ontologies like the traditional Chinese medicine ontology as sub-ontologies. Ontology-based systems are able to reuse sub-ontologies in local repository called ontology cache. In order to improve the overall performance of ontology cache, we propose to evolve sub-ontologies in ontology cache to optimize the knowledge structure of sub-ontologies. Moreover, we present the sub-ontology evolution approach based on a genetic algorithm for reusing large-scale ontologies. We evaluate the proposed evolution approach with the traditional Chinese medicine ontology and obtain promising results.

[1]  Zhaohui Wu,et al.  Towards a Semantic Web of Relational Databases: A Practical Semantic Toolkit and an In-Use Case from Traditional Chinese Medicine , 2006, SEMWEB.

[2]  Alan L. Rector,et al.  Web ontology segmentation: analysis, classification and use , 2006, WWW '06.

[3]  Chris F. Taylor,et al.  The MGED Ontology: a resource for semantics-based description of microarray experiments , 2006, Bioinform..

[4]  Fausto Giunchiglia,et al.  Local Models Semantics, or Contextual Reasoning = Locality + Compatibility , 1998, KR.

[5]  Yuxin Mao,et al.  Dynamic Sub-Ontology Evolution for Collaborative Problem Solving , 2005, AAAI Fall Symposium: Agents and the Semantic Web.

[6]  Alan Jay Smith,et al.  Cache Memories , 1982, CSUR.

[7]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[8]  Fausto Giunchiglia,et al.  Semantic Cooperation and Knowledge Reuse by Using Autonomous Ontologies , 2007, ISWC/ASWC.

[9]  G Stix,et al.  The mice that warred. , 2001, Scientific American.

[10]  Philip A. Bernstein,et al.  A vision for management of complex models , 2000, SGMD.

[11]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[14]  Frank van Harmelen,et al.  C-OWL: Contextualizing Ontologies , 2003, SEMWEB.

[15]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[16]  Gosse Bouma,et al.  SWHi System Description: A Case Study in Information Retrieval, Inference, and Visualization in the Semantic Web , 2007, ESWC.

[17]  Peter J. Denning,et al.  Operating Systems Theory , 1973 .

[18]  Mark A. Musen,et al.  Specifying Ontology Views by Traversal , 2004, International Semantic Web Conference.

[19]  Divesh Srivastava,et al.  Semantic Data Caching and Replacement , 1996, VLDB.

[20]  Vipul Kashyap,et al.  Imprecise Answers in Distributed Environments: Estimation of Information Loss for Multi-Ontology Based Query Processing , 2000, Int. J. Cooperative Inf. Syst..

[21]  Bijan Parsia,et al.  Modularity and Web Ontologies , 2006, KR.

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[24]  Bob J. Wielinga,et al.  Using explicit ontologies in KBS development , 1997, Int. J. Hum. Comput. Stud..

[25]  Huajun Chen,et al.  Interactive Semantic-Based Visualization Environment for Traditional Chinese Medicine Information , 2005, APWeb.

[26]  Olivier Bodenreider,et al.  The Unified Medical Language System (UMLS): integrating biomedical terminology , 2004, Nucleic Acids Res..

[27]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[28]  Michel C. A. Klein,et al.  Ontology Evolution: Not the Same as Schema Evolution , 2004, Knowledge and Information Systems.

[29]  Werner Nutt,et al.  Basic Description Logics , 2003, Description Logic Handbook.

[30]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[31]  Alexander C. Yu,et al.  Methods in biomedical ontology , 2006, J. Biomed. Informatics.

[32]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[33]  Lance D. Chambers Practical handbook of genetic algorithms , 1995 .