Local Cohomological Dimension and Rectified Q-Homological Depth of Complex Analytic spaces

We show that the sum of the local cohomological dimension and the rectified Q-homological depth of a closed analytic subspace of a complex manifold coincide with the dimension of the ambient manifold. In the algebraic case this is equivalent to the coincidence of the rectified Q-homological depth with the de Rham depth studied by Ogus, and follows essentially from his work.

[1]  Jörg Schürmann,et al.  Topology of Singular Spaces and Constructible Sheaves , 2004 .

[2]  A. Dimca Sheaves in Topology , 2004 .

[3]  D. Eisenbud The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry , 2004 .

[4]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[5]  M. Atiyah,et al.  Integrals of the Second Kind on an Algebraic Variety , 1955 .

[6]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[7]  Livy 61 , 1961, Tao te Ching.

[8]  A. Ogus Local cohomological dimension of algebraic varieties , 1973 .

[9]  H. Hamm,et al.  Rectified Homotopical Depth and Grothendieck Conjectures , 2007 .

[10]  M. Saito,et al.  Modules de Hodge Polarisables , 1988 .

[11]  Alexander Grothendieck,et al.  Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2) , 1962 .

[12]  Masaki Kashiwara,et al.  On the Maximally Overdetermined System of Linear Differential Equations (I) (超函数と線型微分方程式 II) , 1974 .

[13]  M. Saito,et al.  Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings , 2018, 1803.07448.

[14]  R. Hartshorne Cohomological Dimension of Algebraic Varieties , 1968 .

[15]  MATT STEVENSON,et al.  ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES , 2015 .

[16]  M. S. Nural,et al.  163 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2005 .

[17]  Masaki Kashiwara,et al.  On the holonomic systems of linear differential equations, II , 1978 .

[18]  Sakinah,et al.  Vol. , 2020, New Medit.

[19]  Morihiko Saito,et al.  Notes on regular holonomic $D$-modules for algebraic geometers , 2022, 2201.01507.