Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.

Recent studies in Saccharomyces cerevisiae suggest that the delivery of copper to Cu/Zn superoxide dismutase (SOD1) is mediated by a cytosolic protein termed the copper chaperone for superoxide dismutase (CCS). To determine the role of CCS in mammalian copper homeostasis, we generated mice with targeted disruption of CCS alleles (CCS(-/-) mice). Although CCS(-/-) mice are viable and possess normal levels of SOD1 protein, they reveal marked reductions in SOD1 activity when compared with control littermates. Metabolic labeling with (64)Cu demonstrated that the reduction of SOD1 activity in CCS(-/-) mice is the direct result of impaired Cu incorporation into SOD1 and that this effect was specific because no abnormalities were observed in Cu uptake, distribution, or incorporation into other cuproenzymes. Consistent with this loss of SOD1 activity, CCS(-/-) mice showed increased sensitivity to paraquat and reduced female fertility, phenotypes that are characteristic of SOD1-deficient mice. These results demonstrate the essential role of any mammalian copper chaperone and have important implications for the development of novel therapeutic strategies in familial amyotrophic lateral sclerosis.

[1]  D. Price,et al.  The Copper Chaperone CCS Is Abundant in Neurons and Astrocytes in Human and Rodent Brain , 1999, Journal of neurochemistry.

[2]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[3]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[4]  R. Bronson,et al.  Reduced Fertility in Female Mice Lacking Copper-Zinc Superoxide Dismutase* , 1998, The Journal of Biological Chemistry.

[5]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[6]  J. Valentine,et al.  Delivering Copper Inside Yeast and Human Cells , 1997, Science.

[7]  D. Price,et al.  Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Casareno,et al.  Intracellular pathways of copper trafficking in yeast and humans. , 1999, Advances in experimental medicine and biology.

[9]  Robert H. Brown,et al.  SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter , 1999, Nature Neuroscience.

[10]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[11]  P. Swiatek,et al.  Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. , 1993, Genes & development.

[12]  R. Casareno,et al.  The Copper Chaperone CCS Directly Interacts with Copper/Zinc Superoxide Dismutase* , 1998, The Journal of Biological Chemistry.

[13]  T. O’Halloran,et al.  Multiple Protein Domains Contribute to the Action of the Copper Chaperone for Superoxide Dismutase* , 1999, The Journal of Biological Chemistry.

[14]  R. Casareno,et al.  The Copper Chaperone for Superoxide Dismutase* , 1997, The Journal of Biological Chemistry.

[15]  D. Price,et al.  The genetic and molecular mechanisms of motor neuron disease , 1998, Current Opinion in Neurobiology.

[16]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[17]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  V. Culotta,et al.  Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Robert H. Brown,et al.  Evidence of Increased Oxidative Damage in Both Sporadic and Familial Amyotrophic Lateral Sclerosis , 1997, Journal of neurochemistry.

[20]  D. Price,et al.  Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm , 1997, Nature.

[21]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[22]  A. Wernimont,et al.  Crystal structure of the copper chaperone for superoxide dismutase , 1999, Nature Structural Biology.

[23]  M. Carson,et al.  ALS, SOD and peroxynitrite , 1993, Nature.

[24]  Robert H. Brown,et al.  Increased 3‐nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis , 1997, Annals of neurology.

[25]  C. Epstein,et al.  Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. , 1997, Archives of biochemistry and biophysics.

[26]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[27]  Mario R. Capecchi,et al.  Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes , 1988, Nature.

[28]  D. Borchelt,et al.  Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Matzuk,et al.  Ovarian function in superoxide dismutase 1 and 2 knockout mice. , 1998, Endocrinology.

[30]  D. Bredesen,et al.  Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis , 1996, Science.

[31]  J. Crapo,et al.  [41] Preparation and assay of superioxide dismutases , 1978 .