Brzozowski's Minimization Algorithm - More Robust than Expected - (Extended Abstract)

For a finite automaton, regardless whether it is deterministic or nondeterministic, Brzozowski's minimization algorithm computes the equivalent minimal deterministic finite automaton by applying reversal and power-set construction twice. Although this is an exponential algorithm because of the power-set construction, it performs well in experimental studies compared to efficient O(nlogn) minimization algorithms. Here we show how to slightly enhance Brzozowski's minimization algorithm by some sort of reachability information so that it can be applied to the following automata models: deterministic cover automata, almost equivalent deterministic finite state machines, and k-similar automata.

[1]  Andreas Maletti,et al.  An nlogn algorithm for hyper-minimizing a (minimized) deterministic automaton , 2010, Theor. Comput. Sci..

[2]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[3]  Artur Jez,et al.  On Minimising Automata with Errors , 2011, MFCS.

[4]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[5]  Alexandra Silva,et al.  Brzozowski's Algorithm (Co)Algebraically , 2011, Logic and Program Semantics.

[6]  Markus Holzer,et al.  From Equivalence to Almost-Equivalence, and Beyond - Minimizing Automata with Errors - (Extended Abstract) , 2012, Developments in Language Theory.

[7]  Artur Jez,et al.  Hyper-minimisation Made Efficient , 2009, MFCS.

[8]  Heiko Körner,et al.  A Time And Space Efficient Algorithm For Minimizing Cover Automata For Finite Languages , 2003, Int. J. Found. Comput. Sci..

[9]  Antonio Restivo,et al.  Nondeterministic Moore automata and Brzozowski's minimization algorithm , 2012, Theor. Comput. Sci..

[10]  Viliam Geffert,et al.  Hyper-minimizing minimized deterministic finite state automata , 2009, RAIRO Theor. Informatics Appl..

[11]  Alexandra Silva,et al.  Logic and Program Semantics , 2012, Lecture Notes in Computer Science.

[12]  Piotr Sankowski,et al.  Mathematical Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings , 2011, MFCS.

[13]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[14]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[15]  Rastislav Královič,et al.  Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings , 2009, MFCS.

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Sheng Yu,et al.  Minimal cover-automata for finite languages , 2001, Theor. Comput. Sci..