Superpixel-Driven Optimized Wishart Network for Fast PolSAR Image Classification Using Global ${k}$ -Means Algorithm

Limitation of optical remote sensing technology gave rise to synthetic aperture radar (SAR) imaging. SAR is a microwave imaging technique, which promises to have a long-range propagation characteristic allowing imaging under harsh weather conditions or in hostile lighting situation. This has opened up a domain of classification using polarimetric SAR (PolSAR) images. In this article, we propose a fast PolSAR image classification algorithm, which uses not only pixel-based feature but also spatial features around each pixel. This is achieved by introducing superpixel-driven optimized Wishart network. The first improvement suggested in this article is to take advantage of a fast global $k$ -means algorithm for obtaining optimal cluster centers within each class. It uses real-valued vector representation of PolSAR coherency matrix along with fast matrix inverse and determinant algorithms to reduce computational overhead. Our method then exploits the information of neighboring pixels by forming a superpixel so that even a noisy pixel may not be assigned a wrong class label. The proposed network uses dual-branch architecture to efficiently combine pixel and superpixel features. We concluded that our proposed method has better efficiency in terms of classification accuracy and computational overhead compared with other deep learning-based methods available in the literature.

[1]  Olaf Hellwich,et al.  Skipping the real world: Classification of PolSAR images without explicit feature extraction , 2017 .

[2]  Jin Zhao,et al.  POLSAR Image Classification via Wishart-AE Model or Wishart-CAE Model , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  Chao Wang,et al.  A Classification Method for Polsar Images using SLIC Superpixel Segmentation and Deep Convolution Neural Network , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Si-Wei Chen,et al.  PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network , 2018, IEEE Geoscience and Remote Sensing Letters.

[5]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[6]  J. Kong,et al.  K-Distribution and Polarimetric Terrain Radar Clutter , 1990, Progress In Electromagnetics Research.

[7]  Jian Yang,et al.  Land Cover Classification for Polarimetric SAR Images Based on Mixture Models , 2014, Remote. Sens..

[8]  Thomas L. Ainsworth,et al.  Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Jie Geng,et al.  Semisupervised Classification of Polarimetric SAR Image via Superpixel Restrained Deep Neural Network , 2018, IEEE Geoscience and Remote Sensing Letters.

[10]  Haipeng Wang,et al.  Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Fang Liu,et al.  POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Lei Shi,et al.  Supervised Graph Embedding for Polarimetric SAR Image Classification , 2013, IEEE Geoscience and Remote Sensing Letters.

[13]  Shuang Wang,et al.  Fuzzy Superpixels for Polarimetric SAR Images Classification , 2018, IEEE Transactions on Fuzzy Systems.

[14]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[15]  Licheng Jiao,et al.  Wishart Deep Stacking Network for Fast POLSAR Image Classification. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[16]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[17]  Biao Hou,et al.  Decomposition-Feature-Iterative-Clustering-Based Superpixel Segmentation for PolSAR Image Classification , 2018, IEEE Geoscience and Remote Sensing Letters.

[18]  Jin Zhao,et al.  Terrain classification with Polarimetric SAR based on Deep Sparse Filtering Network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[19]  Liangpei Zhang,et al.  On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[22]  Nikos A. Vlassis,et al.  The global k-means clustering algorithm , 2003, Pattern Recognit..

[23]  Jie Geng,et al.  High-Resolution SAR Image Classification via Deep Convolutional Autoencoders , 2015, IEEE Geoscience and Remote Sensing Letters.

[24]  Maoguo Gong,et al.  Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power Entropy and Copolarized Ratio , 2013, IEEE Geoscience and Remote Sensing Letters.

[25]  Xu Liu,et al.  Polarimetric Convolutional Network for PolSAR Image Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Tushar Gadhiya,et al.  Optimized Wishart Network for an Efficient Classification of Multifrequency PolSAR Data , 2018, IEEE Geoscience and Remote Sensing Letters.

[28]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[29]  Yue Zhang,et al.  A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance , 2016, Sensors.

[30]  Vassil S. Dimitrov,et al.  Fast Matrix Inversion and Determinant Computation for Polarimetric Synthetic Aperture Radar , 2018, Comput. Geosci..

[31]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[32]  Hongwei Liu,et al.  Convolutional Neural Network With Data Augmentation for SAR Target Recognition , 2016, IEEE Geoscience and Remote Sensing Letters.

[33]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Xuan Li,et al.  SAR ATR based on dividing CNN into CAE and SNN , 2015, 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[35]  Wenxian Yu,et al.  Superpixel-Based Classification With an Adaptive Number of Classes for Polarimetric SAR Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[37]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[38]  Avik Bhattacharya,et al.  Tensorization of Multifrequency PolSAR Data for Classification Using an Autoencoder Network , 2018, IEEE Geoscience and Remote Sensing Letters.

[39]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Yuan Yan Tang,et al.  Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images , 2019, IEEE Transactions on Cybernetics.

[41]  Dan Zhang,et al.  Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information , 2016, IEEE Geoscience and Remote Sensing Letters.

[42]  J. S. Lee,et al.  Classification of multi-look polarimetric SAR data based on complex Wishart distribution , 1992, [Proceedings] NTC-92: National Telesystems Conference.

[43]  Zongben Xu,et al.  A Graph-Based Semisupervised Deep Learning Model for PolSAR Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Javier Redolfi,et al.  Fisher Vectors for PolSAR Image Classification , 2017, IEEE Geoscience and Remote Sensing Letters.

[45]  Shuiping Gou,et al.  Semi-Supervised Tensorial Locally Linear Embedding for Feature Extraction Using PolSAR Data , 2018, IEEE Journal of Selected Topics in Signal Processing.

[46]  Biao Hou,et al.  Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[47]  Yiming Pi,et al.  Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels , 2014, Remote. Sens..

[48]  Shuiping Gou,et al.  Polarimetric SAR Feature Extraction With Neighborhood Preservation-Based Deep Learning , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[49]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Yu Zhou,et al.  Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[51]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[52]  Yudong Zhang,et al.  Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units , 2017, Journal of Real-Time Image Processing.

[53]  Xin Xu,et al.  Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information , 2018, Sensors.