Visual tracking with semi-supervised online weighted multiple instance learning

Adaptive discriminative tracking is a new research topic that has attracted broad attention due to its extensive application value. To take full advantage of the information about targets and their surrounding background, we propose a novel single object tracking-by-detection tracker in this paper, combining semi-supervised learning, multiple instance learning and the Bayesian theorem. The tracker uses a block-based inconsistency function of the labeled and unlabeled training samples in the selection of optimal weak classifiers during the parameter updating phase of each frame. Experimental results showed that the proposed tracker has excellent performance over other eight state-of-the-art trackers for thirteen open-access video sequences.

[1]  Weiwei Zhang,et al.  On-Line Ensemble SVM for Robust Object Tracking , 2007, ACCV.

[2]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[3]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Lei Zhang,et al.  Real-Time Object Tracking Via Online Discriminative Feature Selection , 2013, IEEE Transactions on Image Processing.

[6]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[7]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[8]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[11]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[12]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[13]  Zhiyong Li,et al.  Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis , 2015, The Visual Computer.

[14]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Ming-Hsuan Yang,et al.  Least Soft-thresold Squares Tracking , 2013 .

[17]  Anamitra Makur,et al.  Online adaptive radial basis function networks for robust object tracking , 2010, Comput. Vis. Image Underst..

[18]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[19]  Zhi-Hua Zhou,et al.  Semi-supervised multi-instance multi-label learning for video annotation task , 2012, ACM Multimedia.

[20]  Enhua Wu,et al.  Real-time and robust hand tracking with a single depth camera , 2013, The Visual Computer.

[21]  Xian-Sheng Hua,et al.  Proceedings of the 29th ACM International Conference on Multimedia , 1998, MM 2012.

[22]  Qing Wang,et al.  Object Tracking via Partial Least Squares Analysis , 2012, IEEE Transactions on Image Processing.

[23]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Shengping Zhang,et al.  Robust visual tracking based on online learning sparse representation , 2013, Neurocomputing.

[25]  Jim X. Chen,et al.  Robust object tracking using enhanced random ferns , 2013, The Visual Computer.

[26]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Yi Liu,et al.  SemiBoost: Boosting for Semi-Supervised Learning , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Hefeng Wu,et al.  Weighted attentional blocks for probabilistic object tracking , 2013, The Visual Computer.

[30]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Hefeng Wu,et al.  Robust tracking via discriminative sparse feature selection , 2014, The Visual Computer.

[32]  Yuan Xie,et al.  Online multiple instance gradient feature selection for robust visual tracking , 2012, Pattern Recognit. Lett..

[33]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[34]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.