A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers

In this paper a displacement-based meshfree-enriched finite element method, which was proposed for the linear modeling of near-incompressible elasticity, is generalized for the nonlinear analysis of elastomers. A four-noded triangular element based on the convex meshfree approximation is utilized to discretize the domain. An area-weighted smoothing of deformation gradient is performed on the four-noded triangular elements to provide a locking-free analysis for near-incompressible materials. The L"2-orthogonality property of the smoothing operator enables the employed Hu-Washizu-de Veubeke variational to be degenerated to an assumed strain method. Different from the extra displacement fields in the conventional assumed strain methods or bubble-enriched finite element methods, the enriched meshfree nodes carry physical quantities and are not eliminated by a local static condensation procedure. This leads to a displacement-based formulation easily to be implemented in the existing finite element code. Several numerical examples are solved to demonstrate the effectiveness and accuracy of the proposed formulation for the large deformation analysis of elastomers.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Michael A. Puso,et al.  Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity , 2009 .

[3]  Rolf Stenberg,et al.  Error analysis of some nite element methods for the Stokes problem , 1990 .

[4]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[5]  Bishnu P. Lamichhane,et al.  Inf–sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity , 2008 .

[6]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[7]  E. A. de Souza Neto,et al.  An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains , 2004 .

[8]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Petr Krysl,et al.  Locking‐free continuum displacement finite elements with nodal integration , 2008 .

[11]  Ted Belytschko,et al.  Volumetric locking in the element free Galerkin method , 1999 .

[12]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[13]  Michael A. Puso,et al.  A stabilized nodally integrated tetrahedral , 2006 .

[14]  C. T. Wu,et al.  A generalized approximation for the meshfree analysis of solids , 2011 .

[15]  J. Z. Zhu,et al.  The finite element method , 1977 .

[16]  C. T. Wu,et al.  On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation , 2011 .

[17]  Ted Belytschko,et al.  Triangular composite finite elements , 2000 .

[18]  Hui-Ping Wang,et al.  An improved reproducing kernel particle method for nearly incompressible finite elasticity , 2000 .

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  Jiun-Shyan Chen,et al.  A Pressure Projection Method for Nearly Incompressible Rubber Hyperelasticity, Part II: Applications , 1996 .

[21]  C. T. Wu,et al.  Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids , 2011 .

[22]  Weimin Han,et al.  On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity , 1997 .

[23]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[24]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[25]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[26]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[27]  Jiun-Shyan Chen,et al.  A Pressure Projection Method for Nearly Incompressible Rubber Hyperelasticity, Part I: Theory , 1996 .

[28]  Lei Chen,et al.  A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks , 2009 .

[29]  Ellen Kuhl,et al.  Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.

[30]  C. T. Wu,et al.  A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds , 2009 .

[31]  R. Penn Volume Changes Accompanying the Extension of Rubber , 1970 .

[32]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[33]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[34]  J. Dolbow,et al.  Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test , 2004 .

[35]  Locking in the incompressible limit: pseudo-divergence-free element free Galerkin , 2003 .

[36]  A. Stevenson LXXXVII. Some boundary problems of two-dimensional elasticity , 1943 .

[37]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems , 2009 .

[38]  K. Bathe,et al.  Displacement/pressure mixed interpolation in the method of finite spheres , 2001 .

[39]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[40]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[41]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[42]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[43]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[44]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure , 1949, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[45]  P. Geubelle,et al.  Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids , 2008 .