An update on the CHARA array

The CHARA Array, operated by Georgia State University, is located at Mount Wilson Observatory just north of Los Angeles in California. The CHARA consortium includes many groups, including LIESA in Paris, Observatoire de la Cote d’Azur, the University of Michigan, Sydney University, the Australian National University, the NASA Exoplanet Science Institute, and most recently the University of Exeter. The CHARA Array is a six-element optical/NIR interferometer, and for the time being at least, has the largest operational baselines in the world. In this paper we will give a brief introduction to the array infrastructure with a focus on our Adaptive Optics program, and then discuss current funding as well as opportunities of funding in the near future.

[1]  John Davis The Sydney University Stellar Interferometer (SUSI) , 1994 .

[2]  E. Baines,et al.  Direct Measurement of the Radius and Density of the Transiting Exoplanet HD 189733b with the CHARA Array , 2007, 0704.3722.

[3]  S. Ridgway,et al.  The Search for Stellar Companions to Exoplanet Host Stars Using the CHARA Array , 2008, 0803.4131.

[4]  Romain G. Petrov,et al.  VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .

[5]  David H. Berger Longitudinal Dispersion Compensation for a Long Baseline Optical Interferometer , 2004 .

[6]  D. Hutter,et al.  INTERFEROMETRY OF ò AURIGAE : CHARACTERIZATION OF THE ASYMMETRIC ECLIPSING DISK , 2015 .

[7]  Theo A. ten Brummelaar,et al.  Making the CHARA Array, Part III: engineering decisions. to build or not to build , 2014, Astronomical Telescopes and Instrumentation.

[8]  P. Feautrier,et al.  Long baseline interferometry in the visible: the FRIEND project , 2014, Astronomical Telescopes and Instrumentation.

[9]  Stephen T. Ridgway,et al.  FLUOR fibered beam combiner at the CHARA array , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  S. Ridgway,et al.  THE CLASSIC/CLIMB BEAM COMBINER AT THE CHARA ARRAY , 2013 .

[11]  John D. Monnier,et al.  OPTICAL AND MECHANICAL DESIGN OF THE CHARA ARRAY ADAPTIVE OPTICS , 2013 .

[12]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[13]  Rafael Millan-Gabet,et al.  Jouvence of Fluor: Upgrades of a Fiber Beam Combiner at the CHARA Array , 2013 .

[14]  Xiao Che,et al.  CHARA array adaptive optics II: non-common-path correction and downstream optics , 2014, Astronomical Telescopes and Instrumentation.

[15]  Laszlo Sturmann,et al.  Technical update of the CHARA array , 2000, Astronomical Telescopes and Instrumentation.

[16]  John D. Monnier,et al.  The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results , 2014, Astronomical Telescopes and Instrumentation.

[17]  Peter G. Tuthill,et al.  Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.

[18]  Laszlo Sturmann,et al.  An Update of the CHARA Array , 2003, SPIE Astronomical Telescopes + Instrumentation.

[19]  Stephen T. Ridgway,et al.  Making the CHARA Array, Part II: project management: 15 years on thin ice , 2014, Astronomical Telescopes and Instrumentation.

[20]  Theo ten Brummelaar,et al.  Adaptive optics for the CHARA Array , 2008, Astronomical Telescopes + Instrumentation.

[21]  H. McAlister,et al.  DUST IN THE INNER REGIONS OF DEBRIS DISKS AROUND A STARS , 2008, 0810.3701.

[22]  H McAlister,et al.  Imaging the Surface of Altair , 2007, Science.

[23]  Rafael Millan-Gabet,et al.  Michigan Infrared Combiner (MIRC): commissioning results at the CHARA Array , 2006, SPIE Astronomical Telescopes + Instrumentation.

[24]  Stephen T. Ridgway,et al.  Making the CHARA Array, Part I: founding CHARA, the audacity of hope , 2014, Astronomical Telescopes and Instrumentation.