Adaptive Multi-factor Authentication

With the advancements of modern technology, most user activities rely upon various online services, which need to be trusted and secured to prevent the thorny issue of illegal access. Authentication is the primary defense to address the growing need of authentications, though a single-factor (user id and password, for example) is suffering from some significant pitfalls as mentioned in earlier chapters.

[1]  Hau-San Wong,et al.  Face recognition based on 2D Fisherface approach , 2006, Pattern Recognit..

[2]  Anil K. Jain,et al.  Adaptive flow orientation-based feature extraction in fingerprint images , 1995, Pattern Recognit..

[3]  Claus Vielhauer Biometric User Authentication for it Security - From Fundamentals to Handwriting , 2006, Advances in Information Security.

[4]  I. Elamvazuthi,et al.  Voice Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques , 2010, ArXiv.

[5]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[6]  Stan Davis,et al.  Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Se , 1980 .

[7]  Anil K. Jain,et al.  FVC2004: Third Fingerprint Verification Competition , 2004, ICBA.

[8]  Douglas A. Reynolds,et al.  Modeling prosodic dynamics for speaker recognition , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[9]  Dipankar Dasgupta,et al.  An Adaptive Approach Towards the Selection of Multi-Factor Authentication , 2015, 2015 IEEE Symposium Series on Computational Intelligence.

[10]  Dipankar Dasgupta,et al.  Toward the design of adaptive selection strategies for multi-factor authentication , 2016, Comput. Secur..

[11]  Leopoldo Altamirano Robles,et al.  Improving Fingerprint Verification Using Minutiae Triplets , 2012, Sensors.

[12]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Dipankar Dasgupta,et al.  An adaptive approach for continuous multi-factor authentication in an identity eco-system , 2014, CISR '14.

[14]  H Hermansky,et al.  Perceptual linear predictive (PLP) analysis of speech. , 1990, The Journal of the Acoustical Society of America.

[15]  Anil K. Jain,et al.  FVC2000: Fingerprint Verification Competition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Roy A. Maxion,et al.  Comparing anomaly-detection algorithms for keystroke dynamics , 2009, 2009 IEEE/IFIP International Conference on Dependable Systems & Networks.

[17]  Xudong Jiang,et al.  Fingerprint minutiae matching based on the local and global structures , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[18]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Rajesh Kumar,et al.  Context-Aware Active Authentication Using Smartphone Accelerometer Measurements , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[20]  Anil K. Jain,et al.  Continuous user authentication using temporal information , 2010, Defense + Commercial Sensing.

[21]  R. H. Simons,et al.  Lighting Engineering: Applied Calculations , 2001 .

[22]  Larry S. Davis,et al.  Screen-based active user authentication , 2014, Pattern Recognit. Lett..

[23]  Hyoungjoo Lee,et al.  Improving Authentication Accuracy of Unfamiliar Passwords with Pauses and Cues for Keystroke Dynamics-Based Authentication , 2006, WISI.

[24]  S. Nash,et al.  Linear and Nonlinear Optimization , 2008 .