A powerful 3D model classification mechanism based on fusing multi-graph

Recently, integrating several feature descriptors to be a powerful one has become a hot issue in the field of 3D object understanding. The fusing mechanism is so crucial that can significantly affect the performance of 3D model classification. In this paper, a powerful model for 3D model classification, which can novelly integrate several graphs, is proposed. This mechanism is based on graph fusion and modifies each graph's weight in a boost manner. Each graph's weight in the fusion graph can be dynamically calculated according to its performance. Finally, a fusion graph is acquired to 3D model classification. We conduct the experiments on the publicly available 3D model databases: Princeton shape benchmark (PSB) and SHREC'09, and the experimental results demonstrate the powerful performance of the proposed method.

[1]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Tao,et al.  MATE: A Visual Based 3D Shape Descriptor , 2009 .

[3]  Raveendran Paramesran,et al.  Image analysis by Krawtchouk moments , 2003, IEEE Trans. Image Process..

[4]  Michael Elad,et al.  Content based retrieval of VRML objects: an iterative and interactive approach , 2002 .

[5]  Yue Gao,et al.  3D object retrieval with bag-of-region-words , 2010, ACM Multimedia.

[6]  Ioannis Pratikakis,et al.  3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor , 2008, 3DOR@Eurographics.

[7]  Sumeet Gupta,et al.  Value-based Adoption of Mobile Internet: An empirical investigation , 2007, Decis. Support Syst..

[8]  Zhang Xiong,et al.  3D Object Retrieval With Multitopic Model Combining Relevance Feedback and LDA Model , 2015, IEEE Transactions on Image Processing.

[9]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[10]  Zhang Xiong,et al.  3D Object retrieval based on viewpoint segmentation , 2015, Multimedia Systems.

[11]  Gang Wang,et al.  Registration and Integration of Multiple Object Views for 3D Model Construction , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yue Gao,et al.  View-Based Discriminative Probabilistic Modeling for 3D Object Retrieval and Recognition , 2013, IEEE Transactions on Image Processing.

[13]  Biao Leng,et al.  Support Vector Machine active learning for 3D model retrieval , 2007 .

[14]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[15]  Petros Daras,et al.  SHREC'09 Track: Structural Shape Retrieval on Watertight Models , 2009, 3DOR@Eurographics.

[16]  Yue Gao,et al.  Camera Constraint-Free View-Based 3-D Object Retrieval , 2012, IEEE Transactions on Image Processing.

[17]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[18]  Francis Schmitt,et al.  Silhouette and stereo fusion for 3D object modeling , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[19]  Alfonso Padilla-Vivanco,et al.  Digital image reconstruction using Zernike moments , 2004, SPIE Remote Sensing.

[20]  Zhang Xiong,et al.  ModelSeek: an effective 3D model retrieval system , 2011, Multimedia Tools and Applications.

[21]  Cristian Sminchisescu,et al.  Semi-supervised learning and optimization for hypergraph matching , 2011, 2011 International Conference on Computer Vision.

[22]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[23]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[24]  Mauro R. Ruggeri,et al.  Spectral-Driven Isometry-Invariant Matching of 3D Shapes , 2010, International Journal of Computer Vision.

[25]  Meng Wang,et al.  Unified Video Annotation via Multigraph Learning , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[26]  Dejan V. Vranic DESIRE: a composite 3D-shape descriptor , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[27]  Yue Gao,et al.  3-D Object Retrieval and Recognition With Hypergraph Analysis , 2012, IEEE Transactions on Image Processing.

[28]  Zhang Xiong,et al.  A 3D model recognition mechanism based on deep Boltzmann machines , 2015, Neurocomputing.

[29]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[30]  Yi Liu,et al.  Learning Robust Similarity Measures for 3D Partial Shape Retrieval , 2010, International Journal of Computer Vision.

[31]  James M. Keller,et al.  A fuzzy K-nearest neighbor algorithm , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Chang-Hsing Lee,et al.  A new 3D model retrieval approach based on the elevation descriptor , 2007, Pattern Recognit..

[33]  Marco Attene,et al.  Thesaurus-based 3D Object Retrieval with Part-in-Whole Matching , 2010, International Journal of Computer Vision.

[34]  Zhang Xiong,et al.  A 3D shape retrieval framework for 3D smart cities , 2010, Frontiers of Computer Science in China.

[35]  T. C. Chang,et al.  Graph-based heuristics for recognition of machined features from a 3D solid model , 1988 .

[36]  Liqun Li,et al.  MADE: A Composite Visual-Based 3D Shape Descriptor , 2007, MIRAGE.

[37]  Paul A. Beardsley,et al.  3D Model Acquisition from Extended Image Sequences , 1996, ECCV.

[38]  Hong Qiao,et al.  Feature correspondence based on directed structural model matching , 2015, Image Vis. Comput..

[39]  Zheng Qin,et al.  A powerful relevance feedback mechanism for content-based 3D model retrieval , 2007, Multimedia Tools and Applications.

[40]  Zhang Xiong,et al.  3D Object Classification Using Deep Belief Networks , 2014, MMM.

[41]  Remco C. Veltkamp,et al.  Polyhedral Model Retrieval Using Weighted Point Sets , 2003, Int. J. Image Graph..

[42]  Hong Qiao,et al.  GNCCP—Graduated NonConvexityand Concavity Procedure , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Ryutarou Ohbuchi,et al.  Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features , 2009, CIVR '09.

[44]  Yue Gao,et al.  Representative views re-ranking for 3D model retrieval with multi-bipartite graph reinforcement model , 2010, ACM Multimedia.

[45]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[46]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[47]  Mohamed Daoudi,et al.  A Bayesian 3-D Search Engine Using Adaptive Views Clustering , 2007, IEEE Transactions on Multimedia.

[48]  Steven C. H. Hoi,et al.  Graph Matching by Simplified Convex-Concave Relaxation Procedure , 2014, International Journal of Computer Vision.

[49]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[50]  Petros Daras,et al.  A 3D Shape Retrieval Framework Supporting Multimodal Queries , 2010, International Journal of Computer Vision.

[51]  Qi Tian,et al.  Less is More: Efficient 3-D Object Retrieval With Query View Selection , 2011, IEEE Transactions on Multimedia.

[52]  U. Wolff Comparison Between Cluster Monte Carlo Algorithms in the Ising Model , 1989 .

[53]  Zhang Xiong,et al.  3D object retrieval with stacked local convolutional autoencoder , 2015, Signal Process..

[54]  Yue Gao,et al.  View-based 3D model retrieval with probabilistic graph model , 2010, Neurocomputing.

[55]  Zhang Xiong,et al.  3-D object retrieval using topic model , 2014, Multimedia Tools and Applications.

[56]  Jun-Bao Li,et al.  3D model classification based on nonparametric discriminant analysis with kernels , 2011, Neural Computing and Applications.

[57]  Michael G. Strintzis,et al.  3D object retrieval using the 3D shape impact descriptor , 2009, Pattern Recognit..

[58]  Xindong Wu,et al.  3-D Object Retrieval With Hausdorff Distance Learning , 2014, IEEE Transactions on Industrial Electronics.

[59]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[60]  Ron Meir,et al.  Semantic-oriented 3d shape retrieval using relevance feedback , 2005, The Visual Computer.

[61]  Qionghai Dai,et al.  View-based 3-D Object Retrieval , 2014 .

[62]  Yue Gao,et al.  3D object retrieval based on a graph model descriptor , 2011, Neurocomputing.

[63]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[64]  Zhiyong Liu,et al.  GNCCP—Graduated NonConvexity and Concavity Procedure , 2014 .

[65]  Yue Gao,et al.  View-Based 3D Object Retrieval: Challenges and Approaches , 2014, IEEE MultiMedia.

[66]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[67]  Alberto Del Bimbo,et al.  Content-based retrieval of 3D models , 2006, TOMCCAP.

[68]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.