Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization
暂无分享,去创建一个
Lars Schmidt-Thieme | Nicolas Schilling | Martin Wistuba | L. Schmidt-Thieme | Martin Wistuba | Nicolas Schilling
[1] Michèle Sebag,et al. Collaborative hyperparameter tuning , 2013, ICML.
[2] David D. Cox,et al. A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation , 2009, PLoS Comput. Biol..
[3] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Combining meta-learning and search techniques to select parameters for support vector machines , 2012, Neurocomputing.
[4] Eric Walter,et al. An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..
[5] Gideon S. Mann,et al. Efficient Transfer Learning Method for Automatic Hyperparameter Tuning , 2014, AISTATS.
[6] R JonesDonald,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998 .
[7] Frank Hutter,et al. Using Meta-Learning to Initialize Bayesian Optimization of Hyperparameters , 2014, MetaSel@ECAI.
[8] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[9] Jasper Snoek,et al. Freeze-Thaw Bayesian Optimization , 2014, ArXiv.
[10] Andreas Dengel,et al. Meta-learning for evolutionary parameter optimization of classifiers , 2012, Machine Learning.
[11] Pavel Brazdil,et al. Predicting relative performance of classifiers from samples , 2005, ICML '05.
[12] Lars Schmidt-Thieme,et al. Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization , 2015, ECML/PKDD.
[13] Lars Schmidt-Thieme,et al. Sequential Model-Free Hyperparameter Tuning , 2015, 2015 IEEE International Conference on Data Mining.
[14] Jasper Snoek,et al. Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.
[15] Yoshua Bengio,et al. Algorithms for Hyper-Parameter Optimization , 2011, NIPS.
[16] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[17] Yoshua Bengio,et al. Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..
[18] Frank Hutter,et al. Initializing Bayesian Hyperparameter Optimization via Meta-Learning , 2015, AAAI.
[19] Frank Hutter,et al. Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves , 2015, IJCAI.
[20] Lars Schmidt-Thieme,et al. Learning hyperparameter optimization initializations , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).
[21] Jasper Snoek,et al. Multi-Task Bayesian Optimization , 2013, NIPS.
[22] Kevin Leyton-Brown,et al. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.
[23] Andreas Krause,et al. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.
[24] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[25] David J. Spiegelhalter,et al. Machine Learning, Neural and Statistical Classification , 2009 .
[26] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[27] Lars Schmidt-Thieme,et al. Hyperparameter Optimization with Factorized Multilayer Perceptrons , 2015, ECML/PKDD.
[28] Honglak Lee,et al. An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.
[29] M. Kendall. A NEW MEASURE OF RANK CORRELATION , 1938 .
[30] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[31] Kate Smith-Miles,et al. Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.
[32] Joaquin Vanschoren,et al. Selecting Classification Algorithms with Active Testing , 2012, MLDM.
[33] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .