Manifold regularization based semisupervised semiparametric regression
暂无分享,去创建一个
Zhe Sun | Huangang Wang | Zengke Zhang | Zengke Zhang | Huangang Wang | Zhengshun Sun | Zhengshun Sun
[1] Alexander J. Smola,et al. Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.
[2] Mikhail Belkin,et al. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..
[3] Edward Y. Chang,et al. Semiparametric Regression Using Student $t$ Processes , 2007, IEEE Transactions on Neural Networks.
[4] Ya-Xiang Yuan,et al. Optimization Theory and Methods: Nonlinear Programming , 2010 .
[5] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[6] John Shawe-Taylor,et al. Covering numbers for support vector machines , 2002, IEEE Trans. Inf. Theory.
[7] Meng Wang,et al. Semi-Supervised Kernel Regression , 2006, Sixth International Conference on Data Mining (ICDM'06).
[8] Zoubin Ghahramani,et al. Learning from labeled and unlabeled data with label propagation , 2002 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] Bernhard Schölkopf,et al. Semiparametric Support Vector and Linear Programming Machines , 1998, NIPS.
[11] John D. Lafferty,et al. Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.
[12] Zoubin Ghahramani,et al. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.
[13] Bernhard Schölkopf,et al. Learning with Local and Global Consistency , 2003, NIPS.
[14] Xiaojin Zhu,et al. --1 CONTENTS , 2006 .
[15] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[16] Vikas Sindhwani,et al. On Manifold Regularization , 2005, AISTATS.
[17] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[18] Mikhail Belkin,et al. Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..
[19] Mikhail Belkin,et al. Regularization and Semi-supervised Learning on Large Graphs , 2004, COLT.
[20] Edward B. Fowlkes,et al. Risk analysis of the space shuttle: Pre-Challenger prediction of failure , 1989 .
[21] M. L. Berenson,et al. Applied Statistics: A First Course. , 1989 .
[22] Bernhard Schölkopf,et al. Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators , 1998 .
[23] Bernhard Schölkopf,et al. Learning from Labeled and Unlabeled Data Using Random Walks , 2004, DAGM-Symposium.
[24] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .
[25] Nello Cristianini,et al. Generalization Performance of Classifiers in Terms of Observed Covering Numbers , 1999, EuroCOLT.
[26] C. F. Jeff Wu,et al. Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .
[27] I-Cheng Yeh,et al. Modeling of strength of high-performance concrete using artificial neural networks , 1998 .
[28] Alexander Zien,et al. Semi-Supervised Learning , 2006 .
[29] Lasse Holmström,et al. A semiparametric density estimation approach to pattern classification , 2004, Pattern Recognit..