Dynamic Buckling of a Thin Cylindrical Shell Under Axial Impact

Abstract : Buckling of thin cylindrical shells from axial impact is studied under the assumption that initial imperfections can be approximated by 'white noise'. Linear small deflection theory is used to calculate the resulting growth of the normal modes and a statistical analysis gives the expected values for the 'preferred' axial and circumferential wavelengths. Very high-speed photographs (240,000 frames/sec) of shells buckling under axial impact show excellent agreement with the theory and demonstrate that large deflection buckling follows the pattern established by the early linear motion. (Author)