Direct methods for the search of the second invariant

Abstract We discuss the direct methods that can be used to search for the second invariant of a system defined by the Hamiltonian H = 1 2 (p x 2 ) + p y 2 + A(x, y)p x + B(x, y)p y + V(x, y) . We give an extensive review of those systems that are known to have an invariant that is polynomial in the p 's (most of these have A = B = 0). In addition we introduce the field of non-polynomial invariants by giving several new systems that have a rational or transcendental (in the p 's) invariant (for these A and B are nonzero). The special case of integrability at a fixed value of the energy is also discussed.

[1]  H. Kleinert,et al.  Solution of the path integral for the H-atom , 1979 .

[2]  D. V. Choodnovsky,et al.  Completely integrable class of mechanical systems connected with Korteweg-de Vries and multicomponent Schrödinger equations , 1978 .

[3]  J. Hietarinta Integrable families of Hénon-Heiles-type Hamiltonians and a new duality , 1983 .

[4]  R. S. Kaushal,et al.  Construction of the second constant of motion for two‐dimensional classical systems , 1985 .

[5]  Haruo Yoshida,et al.  Necessary condition for the existence of algebraic first integrals , 1983 .

[6]  A. Perelomov,et al.  Completely integrable classical systems connected with semisimple lie algebras , 1976 .

[7]  C. R. Holt Construction of new integrable Hamiltonians in two degrees of freedom , 1982 .

[8]  Hidekazu Ito Non-integrability of Hénon-Heiles system and a theorem of Ziglin , 1985 .

[9]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[10]  Equivalent potentials in classical mechanics , 1981 .

[11]  V. Inozemtsev On the motion of classical integrable systems of interacting particles in an external field , 1983 .

[12]  G. Thompson Polynomial constants of motion in flat space , 1984 .

[13]  A. Fokas,et al.  Quadratic and cubic invariants in classical mechanics , 1980 .

[14]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[15]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[16]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[17]  B. Dorizzi,et al.  Integrability of Hamiltonians with third‐ and fourth‐degree polynomial potentials , 1983 .

[18]  B. Dorizzi,et al.  Coupling-Constant Metamorphosis and Duality between Integrable Hamiltonian Systems , 1984 .

[19]  H. Lewis,et al.  A resonance formulation for invariants of particle motion in a one-dimensional time-dependent potential , 1985 .

[20]  D. Levi,et al.  On the Olshanetsky-Perelomov many-body system in an external field , 1984 .

[21]  B. Dorizzi,et al.  A new class of integrable systems , 1983 .

[22]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[23]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[24]  S. Wojciechowski Integrability of One Particle in a Perturbed Central Quartic Potential , 1985 .

[25]  B. Dorizzi,et al.  INTEGRALS OF MOTION FOR TODA SYSTEMS WITH UNEQUAL MASSES , 1984 .

[26]  H. Yoshida Existence of exponentially unstable periodic solutions and the non-integrability of homogeneous Hamiltonian systems , 1986 .

[27]  P. Leach Comment on an aspect of a paper by G. Thompson , 1986 .

[28]  W. Sarlet,et al.  First integrals versus configurational invariants and a weak form of complete integrability , 1985 .

[29]  A. Fokas Group theoretical aspects of constants of motion and separable solutions in classical mechanics , 1979 .

[30]  B. Xanthopoulos Integrals of motion and analytic functions , 1984 .

[31]  M. Adler Some finite dimensional integrable systems and their scattering behavior , 1977 .

[32]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[33]  Compatibility Conditions for a Non-Quadratic Integral of Motion , 1982 .

[34]  Integrability of Hamiltonians associated with Fokker-Planck equations. , 1985, Physical review. A, General physics.

[35]  A. Ankiewicz,et al.  The complete Whittaker theorem for two-dimensional integrable systems and its application , 1983 .

[36]  Tanaji Sen Integrable potentials with quadratic invariants , 1985 .

[37]  Joseph Ford,et al.  Stochastic transition in the unequal-mass Toda lattice , 1975 .

[38]  B. Dorizzi,et al.  Painleve property and integrals of motion for the Henon-Heiles system , 1982 .

[39]  F. Calogero Exactly solvable one-dimensional many-body problems , 1975 .

[40]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[41]  Haruo Yoshida,et al.  Necessary condition for the existence of algebraic first integrals , 1983 .

[42]  S. L. Ziglin Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I , 1982 .

[43]  C. Marchioro,et al.  Exact solution of the classical and quantal one-dimensional many-body problems with the two-body potential {ie383-01} , 1975 .

[44]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[45]  F. Vivaldi,et al.  Integrable Hamiltonian Systems and the Painleve Property , 1982 .

[46]  L. S. Hall A theory of exact and approximate configurational invariants , 1983 .

[47]  B. Dorizzi,et al.  Integrable Hamiltonian Systems With Velocity Dependent Potentials , 1985 .

[48]  A. Perelomov,et al.  Completely integrable Hamiltonian systems connected with semisimple Lie algebras , 1976 .

[49]  H. Yoshida A type of second order linear ordinary differential equations with periodic coefficients for which the characteristic exponents have exact expressions , 1984 .

[50]  G. Thompson Darboux's problem of quadratic integrals , 1984 .

[51]  J. Hietarinta New integrable hamiltonians with transcendental invariants , 1984 .

[52]  Valerii V Kozlov,et al.  Integrability and non-integrability in Hamiltonian mechanics , 1983 .

[53]  O. Bogoyavlensky On perturbations of the periodic Toda lattice , 1976 .

[54]  V. Inozemtsev Integrable models of motion of two interacting particles in the external field , 1984 .

[55]  Jarmo Hietarinta,et al.  A search for integrable two-dimensional hamiltonian systems with polynomial potential , 1983 .

[56]  B. Dorizzi,et al.  Hamiltonians with high‐order integrals and the ‘‘weak‐Painlevé’’ concept , 1984 .

[57]  M. Hénon,et al.  Integrals of the Toda lattice , 1974 .

[58]  A. Mathématiques,et al.  Sur un problème de mécanique , 1907 .

[59]  N. Woodhouse Killing tensors and the separation of the Hamilton-Jacobi equation , 1975 .

[60]  S. Wojciechowski On the integrability of the Calogero-Moser system in an external quartic potential and other many-body systems , 1984 .

[61]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[62]  M. Tabor,et al.  Analytic structure of the Henon–Heiles Hamiltonian in integrable and nonintegrable regimes , 1982 .

[63]  A. Fordy Hamiltonian symmetries of the Henon-Heiles system , 1983 .

[64]  W. Miller,et al.  Killing Tensors and Variable Separation for Hamilton-Jacobi and Helmholtz Equations , 1980 .

[65]  J. W. Humberston Classical mechanics , 1980, Nature.

[66]  P. P. Kulish Factorization of the classical and the quantum S matrix and conservation laws , 1976 .

[67]  Peter Havas,et al.  Separation of variables in the Hamilton–Jacobi, Schrödinger, and related equations. I. Complete separation , 1975 .

[68]  J. Hietarinta Classical versus quantum integrability , 1984 .

[69]  B. Dorizzi,et al.  Painlevé Conjecture Revisited , 1982 .

[70]  V. Inozemtsev New Completely Integrable Multiparticle Dynamical Systems , 1984 .

[71]  Y. Aizawa,et al.  On the Stability of Isolating Integrals. I. Effect of the Perturbation in the Potential Function , 1972 .

[72]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .

[73]  B. Dorizzi,et al.  Extending integrable hamiltonian systems from 2 to N dimensions , 1985 .

[74]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .