Local Image Features Resulting from 3-Dimensional Geometric Features, Illumination, and Movement: I

We study images of smooth or piecewise smooth objects illuminated by a single light source, with only background illumination from other sources. The objects may have geometric features (F), namely surface markings, boundary edges, creases and corners; and shade features (S), namely shade curves and cast shadow curves. We determine the local stable interactions between these and apparent contours (C) for the various configurations of F, S, C, and we concisely summarize them using an “alphabet” of local curve configurations. We further determine the generic transitions for the configurations resulting from viewer movement. These classifications are obtained using the methods of singularity theory, which allows us to ensure that our lists are complete, in some cases correcting earlier attempts at similar classifications.

[1]  Peter Giblin,et al.  Apparent contours: an outline , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Stephen Ansolabehere,et al.  Why is There so Little Money in Politics , 2003 .

[3]  K. Sugihara Machine interpretation of line drawings , 1986, MIT Press series in artificial intelligence.

[4]  Jean-Michel Morel,et al.  A Kanizsa programme , 1996 .

[5]  Ian R. Porteous,et al.  Geometric differentiation for the intelligence of curves and surfaces , 1994 .

[6]  Leonbattista Donati Singularités des vues des surfaces éclairées , 1995 .

[7]  J. Damon The unfolding and determinacy theorems for subgroups of and , 1984 .

[8]  Alan K. Mackworth Interpreting Pictures of Polyhedral Scenes , 1973, IJCAI.

[9]  James N. Damon,et al.  Topological Triviality and Versality for Subgroups of A and K , 1988 .

[10]  Farid Tari Some applications of singularity theory to the geometry of curves and surfaces , 1990 .

[11]  David M. Primo,et al.  Campaign Finance Laws and Political Efficacy: Evidence from the States , 2006 .

[12]  P. Giblin,et al.  Curves and Singularities , 1984 .

[13]  K. Roberts,et al.  Thesis , 2002 .

[14]  Leonbattista Donati,et al.  Shade singularities , 1997 .

[15]  Frances E. Lee Geographic Politics in the U.S. House of Representatives: Coalition Building and Distribution of Benefits , 2003 .

[16]  Thomas Stratmann,et al.  Electoral Competition and Low Contribution Limits , 2009 .

[17]  H. Whitney On Singularities of Mappings of Euclidean Spaces. I. Mappings of the Plane Into the Plane , 1955 .

[18]  Michael Pfau,et al.  The Effects of Party- and PAC-Sponsored Issue Advertising and the Potential of Inoculation to Combat its Impact on the Democratic Process , 2001 .

[19]  P. Giblin,et al.  Curves and singularities : a geometrical introduction to singularity theory , 1992 .

[20]  Victor Goryunov,et al.  Projections of generic surfaces with boundaries , 1990 .

[21]  A. Macworth Interpreting pictures of polyhedral scenes , 1973 .

[22]  Michel Merle,et al.  Shade, Shadow and Shape , 1993 .

[23]  Ralph R. Martin,et al.  Interpreting line drawings of objects with k-vertices , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[24]  Jitendra Malik,et al.  Interpreting line drawings of curved objects , 1986, International Journal of Computer Vision.

[25]  David J. Kriegman,et al.  Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces , 1990, ECCV.

[26]  Tim Groseclose,et al.  The Electoral Effects of Incumbent Wealth* , 1999, The Journal of Law and Economics.

[27]  Jean-Paul Dufour,et al.  Sur la stabilité des diagrammes d'applications différentiables , 1977 .

[28]  David J. Kriegman,et al.  Computing exact aspect graphs of curved objects: Algebraic surfaces , 1990, International Journal of Computer Vision.

[29]  J. W. Bruce,et al.  Projections of Surfaces with Boundary , 1990 .

[30]  Jean-Michel Morel,et al.  Topographic Maps and Local Contrast Changes in Natural Images , 1999, International Journal of Computer Vision.

[31]  Roberto Cipolla,et al.  The visual motion of curves and surfaces , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[33]  Joachim H. Rieger,et al.  On the classification of views of piecewise smooth objects , 1987, Image Vis. Comput..

[34]  Vladimir I. Arnold,et al.  INDICES OF SINGULAR POINTS OF 1-FORMS ON A MANIFOLD WITH BOUNDARY, CONVOLUTION OF INVARIANTS OF REFLECTION GROUPS, AND SINGULAR PROJECTIONS OF SMOOTH SURFACES , 1979 .

[35]  J. Goodliffe,et al.  The Effect of War Chests on Challenger Entry in U.S. House Elections , 2001 .

[36]  Michael M. Franz The Devil We Know? Evaluating the Federal Election Commission as Enforcer , 2009 .

[37]  S. Sutherland Seeing things , 1989, Nature.

[38]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[39]  Lee Sigelman,et al.  Partisanship, Blame Avoidance, and the Distribution of Legislative Pork , 2002 .

[40]  Farid Tari,et al.  Projections of Piecewise‐Smooth Surfaces , 1991 .

[41]  J. Koenderink,et al.  The singularities of the visual mapping , 1976, Biological Cybernetics.

[42]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[43]  David J. Kriegman,et al.  Computing Exact Aspect Graphs of Curved Objects: Parametric Surfaces , 1990, AAAI.