Large $N$ limit of the $O(N)$ linear sigma model in 3D

Abstract. In this paper we study the large N limit of the O(N)-invariant linear sigma model, which is a vector-valued generalization of the Φ quantum field theory, on the three dimensional torus. We study the problem via its stochastic quantization, which yields a coupled system of N interacting SPDEs. We prove tightness of the invariant measures in the large N limit. For large enough mass or small enough coupling constant, they converge to the (massive) Gaussian free field at a rate of order 1/ √ N with respect to the Wasserstein distance. We also obtain tightness results for certain O(N) invariant observables. These generalize some of the results in [SSZZ20] from two dimensions to three dimensions. The proof leverages the method recently developed by [GH18] and combines many new techniques such as uniform in N estimates on perturbative objects as well as the solutions.

[1]  The $1/N$ expansion for SO(N) lattice gauge theory at strong coupling , 2016, 1604.04777.

[2]  A. Kupiainen 1/n expansion for a Quantum Field Model , 1980 .

[3]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[4]  Stochastic heat equations for infinite strings with values in a manifold , 2018, 1812.01942.

[5]  M. Hofmanová,et al.  PR ] 3 0 A pr 2 01 8 Global solutions to elliptic and parabolic Φ 4 models in Euclidean space , 2018 .

[6]  Martin Hairer,et al.  Geometric stochastic heat equations , 2019, Journal of the American Mathematical Society.

[7]  Rongchan Zhu,et al.  Singular HJB equations with applications to KPZ on the real line , 2020, Probability Theory and Related Fields.

[8]  Scott A. Smith,et al.  Large $N$ Limit of the $O(N)$ Linear Sigma Model via Stochastic Quantization , 2020, 2005.09279.

[9]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[10]  K. Wilson Quantum field-theory models in less than 4 dimensions , 1973 .

[11]  H. Weber,et al.  GLOBAL WELL-POSEDNESS OF THE DYNAMIC 4 MODEL IN THE PLANE , 2015 .

[12]  Martin Hairer,et al.  Discretisations of rough stochastic PDEs , 2015, 1511.06937.

[13]  The support of singular stochastic PDEs , 2019, 1909.05526.

[14]  A. Jaffe Divergence of perturbation theory for bosons , 1965 .

[15]  Jonathan C. Mattingly,et al.  The strong Feller property for singular stochastic PDEs , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[16]  A. Kupiainen On the 1/n expansion , 1980 .

[17]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[18]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .

[19]  Hendrik Weber,et al.  Spectral gap for the stochastic quantization equation on the 2-dimensional torus , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[20]  R. Catellier,et al.  Paracontrolled distributions and the 3-dimensional stochastic quantization equation , 2013, The Annals of Probability.

[21]  Michael Röckner,et al.  Stochastic Heat Equations with Values in a Manifold via Dirichlet Forms , 2020, SIAM J. Math. Anal..

[22]  Quantum free Yang–Mills on the plane , 2011, 1106.2107.

[23]  S. Chatterjee Rigorous Solution of Strongly Coupled SO(N) Lattice Gauge Theory in the Large N Limit , 2015, Communications in Mathematical Physics.

[24]  Thierry Lévy The master field on the plane , 2011, 1112.2452.

[25]  Rongchan Zhu,et al.  Lattice approximation to the dynamical Φ 43 model ∗ , 2016 .

[26]  Nicolas Perkowski,et al.  PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES , 2012, Forum of Mathematics, Pi.

[27]  Martin Hairer,et al.  A theory of regularity structures , 2013, 1303.5113.

[28]  Space-time localisation for the dynamic $\Phi^4_3$ model , 2018, 1811.05764.

[29]  H. Weber,et al.  THE DYNAMIC Φ 43 MODEL COMES DOWN FROM INFINITY , 2017 .

[30]  Martin Hairer,et al.  The motion of a random string , 2016, 1605.02192.