Image quality and high contrast improvements on VLT/NACO

NACO is the famous and versatile diffraction limited NIR imager and spectrograph at the VLT with which ESO celebrated 10 years of Adaptive Optics. Since two years a substantial effort has been put in understanding and fixing issues that directly affect the image quality and the high contrast performances of the instrument. Experiments to compensate the non-common-path aberrations and recover the highest possible Strehl ratios have been carried out successfully and a plan is hereafter described to perform such measurements regularly. The drift associated to pupil tracking since 2007 was fixed in october 2011. NACO is therefore even more suited for high contrast imaging and can be used with coronagraphic masks in the image plane. Some contrast measurements are shown and discussed. The work accomplished on NACO will serve as reference for the next generation instruments on the VLT, especially the ones working at the diffraction limit and making use of angular differential imaging (i.e. SPHERE, VISIR, and possibly ERIS).

[1]  Peter G. Tuthill,et al.  Sparse Aperture Masking at the VLT , 2010 .

[2]  Markus Hartung,et al.  Suppressing speckle noise for simultaneous differential extrasolar planet imaging (SDI) at the VLT and MMT , 2004, SPIE Astronomical Telescopes + Instrumentation.

[3]  Enrico Fedrigo,et al.  SPARTA for the VLT: status and plans , 2010, Astronomical Telescopes + Instrumentation.

[4]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[5]  Johanan L. Codona,et al.  Laboratory demonstration and characterization of phase-sorting interferometry , 2012, Other Conferences.

[6]  A. Boccaletti,et al.  The Four‐Quadrant Phase Mask Coronagraph. IV. First Light at the Very Large Telescope , 2004 .

[7]  Julien H. Girard,et al.  Coronagraphic Upgrades at the VLT/NaCo: 4-Micron APP Enhanced Spectroscopy? , 2010 .

[8]  Laurent M. Mugnier,et al.  Calibration of CONICA static aberrations by phase diversity , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  L. Mugnier,et al.  Calibration of NAOS and CONICA static aberrations - Application of the phase diversity technique , 2003 .

[10]  Paola Amico,et al.  Direct imaging of exoplanets and brown dwarfs with the VLT: NACO pupil-stabilised Lyot coronagraphy at 4 µm , 2009 .

[11]  E. Fedrigo,et al.  GALACSI – The ground layer adaptive optics system for MUSE , 2006 .

[12]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[13]  Olivier Guyon,et al.  Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems , 2012, Other Conferences.

[14]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[15]  Dimitri Mawet,et al.  Nijboer-Zernike phase retrieval for high contrast imaging. Principle, on-sky demonstration with NACO , 2012 .

[16]  David Mouillet,et al.  A New Lenslet Array for the NACO Laser Guide Star Wavefront Sensor , 2010 .

[17]  Paul Stewart,et al.  Sparse aperture masking (SAM) at NAOS/CONICA on the VLT , 2010, Astronomical Telescopes + Instrumentation.

[18]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[19]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[20]  Serge Meimon,et al.  An optimized calibration strategy for high order adaptive optics systems : the Slope-Oriented Hadamard Actuation , 2010 .

[21]  James Roger P. Angel,et al.  A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and 2 λ/D radius , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  Franck Marchis,et al.  Is that really your Strehl ratio? , 2004, SPIE Astronomical Telescopes + Instrumentation.

[23]  Pierre-Yves Madec,et al.  ERIS adaptive optics system design , 2012, Other Conferences.

[24]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[25]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[26]  A. Labeyrie,et al.  The Four‐Quadrant Phase‐Mask Coronagraph. I. Principle , 2000 .

[27]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[28]  Sridharan Rengaswamy,et al.  Status and new operation modes of the versatile VLT/NaCo , 2010, Astronomical Telescopes + Instrumentation.

[29]  T. Fusco,et al.  SAXO, the eXtreme Adaptive Optics System of SPHERE: overview and calibration procedure , 2010, Astronomical Telescopes + Instrumentation.

[30]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[31]  Gerard Rousset,et al.  NAOS + CONICA at YEPUN : First VLT Adaptive Optics System Sees First Light , 2001 .

[32]  Julien H. Girard,et al.  SEARCHING FOR GAS GIANT PLANETS ON SOLAR SYSTEM SCALES: VLT NACO/APP OBSERVATIONS OF THE DEBRIS DISK HOST STARS HD172555 AND HD115892 , 2011, 1106.4528.

[33]  Laird M. Close,et al.  Suppressing Speckle Noise for Simultaneous Differential Extrasolar Planet Imaging (SDI) at the VLT and MMT , 2005, Proceedings of the International Astronomical Union.

[34]  M. Kiekebusch,et al.  GRAAL: a seeing enhancer for the NIR wide-field imager Hawk-I , 2010, Astronomical Telescopes + Instrumentation.

[35]  F. Kerber,et al.  Upgrade of VISIR the mid-infrared instrument at the VLT , 2010, Astronomical Telescopes + Instrumentation.

[36]  Kjetil Dohlen,et al.  SPHERE: a planet imager for the VLT , 2010 .

[37]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[38]  Markus Janson,et al.  SEARCHING FOR YOUNG JUPITER ANALOGS AROUND AP COL: L-BAND HIGH-CONTRAST IMAGING OF THE CLOSEST PRE-MAIN-SEQUENCE STAR , 2012, 1205.6890.

[39]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[40]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[41]  E. Serabyn,et al.  EXTREME ADAPTIVE OPTICS IMAGING WITH A CLEAR AND WELL-CORRECTED OFF-AXIS TELESCOPE SUBAPERTURE , 2007, astro-ph/0702592.

[42]  A. Eckart,et al.  UvA-DARE ( Digital Academic Repository ) Polarized NIR and X-ray flares from Sagittarius A * , 2008 .

[43]  W. Brandner,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF THE EXOPLANET HR 8799 c , 2010, 1001.2017.

[44]  Pierre Riaud,et al.  New observing modes of NACO , 2005 .

[45]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[46]  A. Lagrange,et al.  Sparse aperture masking at the VLT. I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569 , 2011, 1107.1426.

[47]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[48]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[49]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[50]  Francois Lacombe,et al.  NAOS infrared wavefront sensor design and performance , 2003, SPIE Astronomical Telescopes + Instrumentation.