Long-term maintenance and public exhibition of deep-sea Hydrothermal fauna: the AbyssBox project

[1]  K. Moskvitch Health check for deep-sea mining , 2014, Nature.

[2]  P. Legendre,et al.  High-resolution dynamics of a deep-sea hydrothermal mussel assemblage monitored by the EMSO-Açores MoMAR observatory , 2014 .

[3]  L. Levin,et al.  A Call for Deep-Ocean Stewardship , 2014, Science.

[4]  Daphne Cuvelier,et al.  Rhythms and Community Dynamics of a Hydrothermal Tubeworm Assemblage at Main Endeavour Field – A Multidisciplinary Deep-Sea Observatory Approach , 2014, PloS one.

[5]  J. Li,et al.  Alterations in Membrane Phospholipid Fatty Acids of Gram-Positive Piezotolerant Bacterium Sporosarcina sp. DSK25 in Response to Growth Pressure , 2014, Lipids.

[6]  Bruce Shillito,et al.  The IPOCAMP Pressure Incubator for Deep-Sea Fauna , 2014 .

[7]  A. Oliphant,et al.  The effects of temperature and pressure acclimation on the temperature and pressure tolerance of the shallow-water shrimp Palaemonetes varians , 2014 .

[8]  J. Spicer What can an ecophysiological approach tell us about the physiological responses of marine invertebrates to hypoxia? , 2014, Journal of Experimental Biology.

[9]  N. Mestre,et al.  Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp , 2013 .

[10]  Steven Mihály,et al.  A year in Barkley Canyon: A time-series observatory study of mid-slope benthos and habitat dynamics using the NEPTUNE Canada network , 2013 .

[11]  M. Zbinden,et al.  Thermal Limit for Metazoan Life in Question: In Vivo Heat Tolerance of the Pompeii Worm , 2013, PloS one.

[12]  G. Vogt Ageing and longevity in the Decapoda (Crustacea): A review , 2012 .

[13]  F. Pradillon,et al.  High hydrostatic pressure environments. , 2012 .

[14]  D. Dausse,et al.  MoMar-Demo at Lucky Strike. A near-real time multidisciplinary observatory of hydrothermal processes and ecosystems at the Mid-Atlantic Ridge , 2011 .

[15]  P. Tyler,et al.  Man and the Last Great Wilderness: Human Impact on the Deep Sea , 2011, PloS one.

[16]  E. Shimada,et al.  Rearing and spawning of the deep-sea fish Malacocottus gibber in the laboratory , 2011, Ichthyological Research.

[17]  D. Bazylinski,et al.  Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. , 2010, Trends in microbiology.

[18]  K. Hamasaki,et al.  Number and Duration of Zoeal Stages of the Hydrothermal Vent Crab Gandalfus yunohana from Laboratory Reared Specimens , 2010 .

[19]  J. Sarrazin,et al.  Live capture of megafauna from 2300 m depth, using a newly designed Pressurized Recovery Device , 2008 .

[20]  L. Delauney,et al.  TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents , 2007, OCEANS 2007 - Europe.

[21]  J. Escartín,et al.  Monitoring and Observatories: Multidisciplinary, Time-Series Observations at Mid-Ocean Ridges , 2007 .

[22]  Hiroshi Miyake,et al.  Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure , 2007 .

[23]  J. Ott Handbook of Deep‐Sea Hydrothermal Vent Fauna , 2006 .

[24]  Raymond W. Lee,et al.  Thermal Preference and Tolerance of Alvinellids , 2006, Science.

[25]  D. Jollivet,et al.  Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata , 2006, Journal of Experimental Biology.

[26]  Jennifer A. Devine,et al.  Fisheries: Deep-sea fishes qualify as endangered , 2006, Nature.

[27]  M. Aizawa,et al.  Survival of Deep-Sea Shrimp (Alvinocaris sp.) During Decompression and Larval Hatching at Atmospheric Pressure , 2005, Marine Biotechnology.

[28]  P. Sarradin,et al.  Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. , 2004, Micron.

[29]  P. Sarradin,et al.  Respiratory adaptations of a deep-sea hydrothermal vent crab. , 2004, Micron.

[30]  C. Smith,et al.  The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025 , 2003, Environmental Conservation.

[31]  Masuo Aizawa,et al.  Pressure-stat aquarium system designed for capturing and maintaining deep-sea organisms , 2002 .

[32]  G. Charmantier,et al.  Hydromineral Regulation in the Hydrothermal Vent Crab Bythograea thermydron , 2001, The Biological Bulletin.

[33]  P. Sarradin,et al.  Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls , 2001 .

[34]  P. Sarradin,et al.  Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau , 2001 .

[35]  Farming Tubeworms , 1998, Science.

[36]  Gans,et al.  Suppression of volcanism during rapid extension in the basin and range province, united states , 1998, Science.

[37]  J. W. Martin,et al.  A new species of the shrimp genus Chorocaris Martin & Hessler, 1990 (Crustacea: Decapoda: Bresiliidae) from hydrothermal vent fields along the Mid-Atlantic ridge , 1995 .

[38]  A. Yayanos,et al.  Microbiology to 10,500 meters in the deep sea. , 1995, Annual review of microbiology.

[39]  J. Childress,et al.  Homeoviscous Properties Implicated by the Interactive Effects of Pressure and Temperature on the Hydrothermal Vent Crab Bythograea thermydron. , 1994, The Biological bulletin.

[40]  Austin B. Williams NEW MARINE DECAPOD CRUSTACEANS FROM WATERS INFLUENCED BY HYDROTHERMAL DISCHARGE, BRINE, AND HYDROCARBON SEEPAGE , 1988 .

[41]  P. Rona,et al.  Two New Caridean Shrimps (Bresiliidae) From a Hydrothermal Field on the Mid-atlantic Ridge , 1986 .

[42]  T. J. Mickel,et al.  EFFECTS OF PRESSURE AND TEMPERATURE ON THE EKG AND HEART RATE OF THE HYDROTHERMAL VENT CRAB BYTHOGRAEA THERMYDRON (BRACHYURA) , 1982 .

[43]  A. Yayanos Recovery and Maintenance of Live Amphipods at a Pressure of 580 Bars from an Ocean Depth of 5700 Meters , 1978, Science.