On Optimal Joint Reflective and Refractive Dividend Strategies in Spectrally Positive Lévy Processes

The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this context, numerous papers considered threshold (refractive) and barrier (reflective) dividend strategies. These were shown to be optimal in a number of different contexts for bounded and unbounded payout rates, respectively. In this paper, motivated by the behaviour of some dividend paying stock exchange companies, we determine the optimal dividend strategy when both continuous (refractive) and lump sum (reflective) dividends can be paid at any time, and if they are subject to different transaction rates. We consider the general family of spectrally positive L\'evy processes. Using scale functions, we obtain explicit formulas for the expected present value of dividends until ruin, with a penalty at ruin. We develop a verification lemma, and show that a two-layer (a,b) strategy is optimal. Such a strategy pays continuous dividends when the surplus exceeds level a>0, and all of the excess over b>a as lump sum dividend payments. Results are illustrated.

[1]  Filip Lundberg,et al.  Über die Theorie der Rückversicherung , 1909 .

[2]  Harald Cramér,et al.  Collective risk theory : a survey of the theory from the point of view of the theory of stochastic processes , 1955 .

[3]  Hans-Ulrich Gerber,et al.  Entscheidungskriterien für den zusammengesetzten Poisson-Prozess , 1969 .

[4]  P. Protter Stochastic integration and differential equations , 1990 .

[5]  Anders Martin-Löf,et al.  On the mathematical theory of risk , 1994 .

[6]  Søren Asmussen,et al.  Ruin probabilities , 2001, Advanced series on statistical science and applied probability.

[7]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[8]  Christian Mazza,et al.  A link between wave governed random motions and ruin processes , 2004 .

[9]  Hans U. Gerber,et al.  On optimal dividends: From reflection to refraction , 2006 .

[10]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[11]  Hansjörg Albrecher,et al.  A Risk Model with Multilayer Dividend Strategy , 2007 .

[12]  Refracted Lévy processes , 2008 .

[13]  Erhan Bayraktar,et al.  Optimizing venture capital investments in a jump diffusion model , 2008, Math. Methods Oper. Res..

[14]  R. Loeffen,et al.  On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes , 2008, 0811.1862.

[15]  Benjamin Avanzi Strategies for Dividend Distribution: A Review , 2009 .

[16]  Mladen Savov,et al.  Smoothness of scale functions for spectrally negative Lévy processes , 2009, 0903.1467.

[17]  Hansjörg Albrecher,et al.  Optimality results for dividend problems in insurance , 2009 .

[18]  Benjamin Avanzi,et al.  Optimal Dividends and Capital Injections in the Dual Model with Diffusion , 2010 .

[19]  A. C. Ng On the Upcrossing and Downcrossing Probabilities of a Dual Risk Model With Phase-Type Gains , 2010, ASTIN Bulletin.

[20]  Andreas E. Kyprianou,et al.  The Theory of Scale Functions for Spectrally Negative Lévy Processes , 2011, 1104.1280.

[21]  Andreas E. Kyprianou,et al.  Optimal Control with Absolutely Continuous Strategies for Spectrally Negative Lévy Processes , 2010, Journal of Applied Probability.

[22]  Stéphane Loisel,et al.  Why ruin theory should be of interest for insurance practitioners and risk managers nowadays , 2012 .

[23]  Lourdes B. Afonso,et al.  Dividend problems in the dual risk model , 2013 .

[24]  Kazutoshi Yamazaki,et al.  Precautionary measures for credit risk management in jump models , 2010, 1004.0595.

[25]  Erhan Bayraktar,et al.  ON OPTIMAL DIVIDENDS IN THE DUAL MODEL , 2013, ASTIN Bulletin.

[26]  Erhan Bayraktar,et al.  Optimal Dividends in the Dual Model Under Transaction Costs , 2013, 1301.7525.

[27]  C. Yin,et al.  Optimal dividends problem with a terminal value for spectrally positive Levy processes , 2013, 1302.6011.

[28]  Kazutoshi Yamazaki,et al.  Phase-type fitting of scale functions for spectrally negative Lévy processes , 2010, J. Comput. Appl. Math..

[29]  C. Yin,et al.  ON THE OPTIMAL DIVIDEND PROBLEM FOR A SPECTRALLY POSITIVE LÉVY PROCESS , 2013, ASTIN Bulletin.

[30]  José-Luis Pérez,et al.  On the Refracted-Reflected Spectrally Negative Levy Processes , 2015 .

[31]  Kazutoshi Yamazaki,et al.  REFRACTION–REFLECTION STRATEGIES IN THE DUAL MODEL , 2015, ASTIN Bulletin.

[32]  Daniel Hernández-Hernández,et al.  Optimality of Refraction Strategies for Spectrally Negative Lévy Processes , 2016, SIAM J. Control. Optim..

[33]  Bernard Wong,et al.  A Note on Realistic Dividends in Actuarial Surplus Models , 2016 .