Kernel Density Estimation

Here K is the so-called kernel, i.e., a non-negative function that integrates to one and h is the so-called bandwidth of the kernel. Furthermore, the so-called scaled kernel Kh is defined as Kh(x) = 1 hK( x h). That is, Kh is obtained by stretching or shrinking, respectively, K regarding its width by the factor h, rescaling its height so that K again integrates up to one. A frequent choice for the kernel is the Gaussian kernel, i.e., K(y) = φ(y), where φ is the standard normal density function, i.e.,

[1]  M. Hazelton,et al.  Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernal density estimation , 2005 .

[2]  Inge Koch,et al.  Feature significance for multivariate kernel density estimation , 2008, Comput. Stat. Data Anal..

[3]  Simon J. Sheather,et al.  Using non stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives , 1991 .

[4]  I. Horová,et al.  Kernel Density Gradient Estimate , 2011 .

[5]  D. W. Scott,et al.  Cross-Validation of Multivariate Densities , 1994 .

[6]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[7]  G. Terrell The Maximal Smoothing Principle in Density Estimation , 1990 .

[8]  T. Duong,et al.  Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices , 2010 .

[9]  R. Kronmal,et al.  On Multivariate Density Estimates Based on Orthogonal Expansions , 1970 .

[10]  M. Wand,et al.  ASYMPTOTICS FOR GENERAL MULTIVARIATE KERNEL DENSITY DERIVATIVE ESTIMATORS , 2011 .

[11]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[12]  Grace Wahba,et al.  A Polynomial Algorithm for Density Estimation , 1971 .

[13]  Douglas W. Nychka,et al.  Choosing a Range for the Amount of Smoothing in Nonparametric Regression , 1991 .

[14]  Jiří Zelinka,et al.  Contribution to the bandwidth choice for kernel density estimates , 2007, Comput. Stat..

[15]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[16]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[17]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[18]  M. C. Jones,et al.  E. Fix and J.L. Hodges (1951): An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation: Commentary on Fix and Hodges (1951) , 1989 .

[19]  M. Hazelton,et al.  Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation , 2005 .

[20]  D. W. Scott On optimal and data based histograms , 1979 .

[21]  James Stephen Marron,et al.  On the Amount of Noise Inherent in Bandwidth Selection for a Kernel Density Estimator , 1987 .

[22]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .

[23]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[24]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[25]  Kamila Vopatová,et al.  Visualization and Bandwidth Matrix Choice , 2012 .

[26]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[27]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[28]  M. R. Leadbetter,et al.  On the Estimation of the Probability Density, I , 1963 .

[29]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[30]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .