Machine learning accelerated likelihood-free event reconstruction in dark matter direct detection

Reconstructing the position of an interaction for any dual-phase time projection chamber (TPC) with the best precision is key to directly detecting Dark Matter. Using the likelihood-free framework, a new algorithm to reconstruct the 2-D (x,y) position and the size of the charge signal (e) of an interaction is presented. The algorithm uses the secondary scintillation light distribution (S2) obtained by simulating events using a waveform generator. To deal with the computational effort required by the likelihood-free approach, we employ the Bayesian Optimization for Likelihood-Free Inference (BOLFI) algorithm. Together with BOLFI, prior distributions for the parameters of interest (x,y,e) and highly informative discrepancy measures to perform the analyses are introduced. We evaluate the quality of the proposed algorithm by a comparison against the currently existing alternative methods using a large-scale simulation study. BOLFI provides a natural probabilistic uncertainty measure for the reconstruction and it improved the accuracy of the reconstruction over the next best algorithm by up to 15% when focusing on events at large radii (R > 30 cm, the outer 37% of the detector). In addition, BOLFI provides the smallest uncertainties among all the tested methods.

[1]  J. Naganoma,et al.  Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.

[2]  Andrew M. Stuart,et al.  How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..

[3]  R. Webb,et al.  Position reconstruction in LUX , 2017, 1710.02752.

[4]  L. Roszkowski,et al.  WIMP dark matter candidates and searches—current status and future prospects , 2017, Reports on progress in physics. Physical Society.

[5]  F. V. Massoli,et al.  First Dark Matter Search Results from the XENON1T Experiment. , 2017, Physical review letters.

[6]  S. Parlati,et al.  The XENON1T dark matter experiment , 2017, The European Physical Journal C.

[7]  Aki Vehtari,et al.  ELFI: Engine for Likelihood Free Inference , 2016, J. Mach. Learn. Res..

[8]  E. Jennings,et al.  A New Approach for Obtaining Cosmological Constraints from Type Ia Supernovae using Approximate Bayesian Computation , 2016, 1611.03087.

[9]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[10]  Elise Jennings,et al.  astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation , 2016, Astron. Comput..

[11]  David W. Hogg,et al.  Approximate Bayesian computation in large-scale structure : constraining the galaxy-halo connection , 2016, 1607.01782.

[12]  F. V. Massoli,et al.  Low-mass dark matter search using ionization signals in XENON100 , 2016, 1605.06262.

[13]  Dennis Prangle,et al.  Summary Statistics in Approximate Bayesian Computation , 2015, 1512.05633.

[14]  B. Pelssers Position reconstruction and data quality in XENON , 2015 .

[15]  L. Rauch,et al.  Dark matter direct-detection experiments , 2015, 1509.08767.

[16]  A. Amara,et al.  Approximate Bayesian computation for forward modeling in cosmology , 2015, 1504.07245.

[17]  E. E. O. Ishida,et al.  cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation , 2015, Astron. Comput..

[18]  Chihway Chang,et al.  CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY , 2015, 1504.02778.

[19]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[20]  P. Roy,et al.  Nonthermal two component dark matter model for Fermi-LAT γ-ray excess and 3.55 keV X-ray line , 2015, 1501.02666.

[21]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[22]  Max Welling,et al.  GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation , 2014, UAI.

[23]  Richard Wilkinson,et al.  Accelerating ABC methods using Gaussian processes , 2014, AISTATS.

[24]  Oliver Ratmann,et al.  Statistical modelling of summary values leads to accurate Approximate Bayesian Computations , 2013, 1305.4283.

[25]  L. Strigari,et al.  Galactic Searches for Dark Matter , 2012, 1211.7090.

[26]  W. M. Wood-Vasey,et al.  LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY , 2012, 1206.2563.

[27]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[28]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[29]  A. N. Pettitt,et al.  Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.

[30]  G. Kalmus,et al.  Position Reconstruction in a Dual Phase Xenon Scintillation Detector , 2011, IEEE Transactions on Nuclear Science.

[31]  Guillaume Deffuant,et al.  Adaptive approximate Bayesian computation for complex models , 2011, Computational Statistics.

[32]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[33]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[34]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[35]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[36]  M. Beaumont Approximate Bayesian Computation in Evolution and Ecology , 2010 .

[37]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[38]  J.M.F. dos Santos,et al.  Design and performance of the XENON10 dark matter experiment , 2010, 1001.2834.

[39]  Alex R Cook,et al.  The International Journal of Biostatistics Inference in Epidemic Models without Likelihoods , 2011 .

[40]  E. Brown,et al.  The XENON100 dark matter experiment , 2009, 1107.2155.

[41]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[42]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[43]  M. P. Casado,et al.  The ATLAS Experiment at the CERN Large Hadron Collider , 2008 .

[44]  C. Robert,et al.  Adaptive approximate Bayesian computation , 2008, 0805.2256.

[45]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..

[46]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[47]  K. R. Clarke,et al.  On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages , 2006 .

[48]  J. García-Bellido,et al.  Modern Cosmology , 2004, hep-ph/0407111.

[49]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[50]  E. Feigelson,et al.  Statistical Challenges in Modern Astronomy , 2004, astro-ph/0401404.

[51]  D. Clowe,et al.  Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56 , 2003, astro-ph/0309303.

[52]  George Casella,et al.  Estimating bayesian credible intervals , 2003 .

[53]  Carl E. Rasmussen Gaussian Processes in Machine Learning , 2003, Advanced Lectures on Machine Learning.

[54]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[55]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[56]  P. Salucci,et al.  The extended rotation curve and the dark matter halo of M33 , 1999, astro-ph/9909252.

[57]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[58]  Gutti Jogesh Babu,et al.  Statistical Challenges in Modern Astronomy IV , 1998 .

[59]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[60]  D. Spergel Particle Dark Matter , 1996, astro-ph/9603026.

[61]  M. Kamionkowski,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9506380.

[62]  Robert W. Mee,et al.  Regression toward the Mean and the Paired Sample t Test , 1991 .

[63]  Goodman,et al.  Detectability of certain dark-matter candidates. , 1985, Physical review. D, Particles and fields.

[64]  Robert Cousins,et al.  Clarification of the use of CHI-square and likelihood functions in fits to histograms , 1984 .

[65]  H. Howlader,et al.  Credible and HPD Intervals of the Parameter and Reliability of Rayleigh Distribution , 1983, IEEE Transactions on Reliability.

[66]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[67]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[68]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[69]  Michael G. B. Blum,et al.  Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation , 2010, COMPSTAT.

[70]  Gianfranco Bertone,et al.  Particle Dark Matter: List of contributors , 2010 .

[71]  H. Shaffer,et al.  Annual review of ecology, evolution, and systematics , 2003 .

[72]  T. Pham-Gia,et al.  Computation of the highest posterior density interval in bayesian analysis , 1993 .

[73]  Theoretical Statistics , 1956, Nature.